3BHub, Biophysics for Biotechnology and Biomedicine, Departamento de Química Física I, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Physikalische Chemie I, Univeristät Bayreuth, Universitätsstraße 30, D95447 Bayreuth, Germany; Physikalische und Biophysikalische Chemie I, Universität Bielefeld, Universitätsstraße 25, D33615 Bielefeld, Germany.
3BHub, Biophysics for Biotechnology and Biomedicine, Departamento de Química Física I, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain.
Adv Colloid Interface Sci. 2017 Sep;247:543-554. doi: 10.1016/j.cis.2017.07.009. Epub 2017 Jul 16.
Membrane pores can significantly alter not only the permeation dynamics of biological membranes but also their elasticity. Large membrane pores able to transport macromolecular contents represent an interesting model to test theoretical predictions that assign active-like (non-equilibrium) behavior to the permeability contributions to the enhanced membrane fluctuations existing in permeable membranes [Maneville et al. Phys. Rev. Lett. 82, 4356 (1999)]. Such high-amplitude active contributions arise from the forced transport of solvent and solutes through the open pores, which becomes even dominant at large permeability. In this paper, we present a detailed experimental analysis of the active shape fluctuations that appear in highly permeable lipid vesicles with large macromolecular pores inserted in the lipid membrane, which are a consequence of transport permeability events occurred in an osmotic gradient. The experimental results are found in quantitative agreement with theory, showing a remarkable dependence with the density of membrane pores and giving account of mechanical compliances and permeability rates that are compatible with the large size of the membrane pore considered. The presence of individual permeation events has been detected in the fluctuation time-series, from which a stochastic distribution of the permeation events compatible with a shot-noise has been deduced. The non-equilibrium character of the membrane fluctuations in a permeation field, even if the membrane pores are mere passive transporters, is clearly demonstrated. Finally, a bio-nano-technology outlook of the proposed synthetic concept is given on the context of prospective uses as active membrane DNA-pores exploitable in gen-delivery applications based on lipid vesicles.
膜孔不仅可以显著改变生物膜的渗透动力学,还可以改变其弹性。能够运输大分子物质的大膜孔是一个有趣的模型,可以用来测试理论预测,这些预测将主动(非平衡)行为分配给增强的膜波动的渗透性贡献,这些波动存在于可渗透的膜中[Maneville 等人,Phys. Rev. Lett. 82, 4356(1999)]。这种高振幅的主动贡献源于溶剂和溶质通过开放孔的强制运输,在渗透性较大时甚至变得更为主导。在本文中,我们对高渗透性脂质囊泡中出现的主动形状波动进行了详细的实验分析,这些囊泡中插入了大的大分子孔,这是渗透渗透性事件在渗透梯度中发生的结果。实验结果与理论定量一致,显示出与膜孔密度的显著依赖性,并解释了与所考虑的大膜孔尺寸兼容的机械顺应性和渗透性速率。在波动时间序列中检测到了单个渗透事件的存在,从中推导出了与噪声兼容的渗透事件的随机分布。即使膜孔仅仅是被动的转运体,渗透场中膜波动的非平衡性质也得到了清楚的证明。最后,在基于脂质囊泡的基因传递应用中可利用的主动膜 DNA 孔的潜在用途的背景下,给出了所提出的合成概念的生物纳米技术展望。