Suppr超能文献

智能制造系统的自适应多尺度预测与健康管理

Adaptive Multi-scale Prognostics and Health Management for Smart Manufacturing Systems.

作者信息

Choo Benjamin Y, Adams Stephen C, Weiss Brian A, Marvel Jeremy A, Beling Peter A

机构信息

University of Virginia, Charlottesville, Virginia, 22904, U.S.A.

National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, U.S.A.

出版信息

Int J Progn Health Manag. 2016;7:014.

Abstract

The Adaptive Multi-scale Prognostics and Health Management (AM-PHM) is a methodology designed to enable PHM in smart manufacturing systems. In application, PHM information is not yet fully utilized in higher-level decision-making in manufacturing systems. AM-PHM leverages and integrates lower-level PHM information such as from a machine or component with hierarchical relationships across the component, machine, work cell, and assembly line levels in a manufacturing system. The AM-PHM methodology enables the creation of actionable prognostic and diagnostic intelligence up and down the manufacturing process hierarchy. Decisions are then made with the knowledge of the current and projected health state of the system at decision points along the nodes of the hierarchical structure. To overcome the issue of exponential explosion of complexity associated with describing a large manufacturing system, the AM-PHM methodology takes a hierarchical Markov Decision Process (MDP) approach into describing the system and solving for an optimized policy. A description of the AM-PHM methodology is followed by a simulated industry-inspired example to demonstrate the effectiveness of AM-PHM.

摘要

自适应多尺度预测与健康管理(AM-PHM)是一种旨在实现智能制造系统中的预测与健康管理(PHM)的方法。在实际应用中,PHM信息在制造系统的高层决策中尚未得到充分利用。AM-PHM利用并整合来自机器或部件等较低层级的PHM信息,这些信息具有跨越制造系统中部件、机器、工作单元和装配线层级的层次关系。AM-PHM方法能够在制造过程层次结构的上下文中创建可操作的预测和诊断智能。然后,在沿着层次结构节点的决策点处,依据系统当前和预测的健康状态知识做出决策。为了克服与描述大型制造系统相关的复杂性呈指数级增长的问题,AM-PHM方法采用分层马尔可夫决策过程(MDP)方法来描述系统并求解优化策略。在对AM-PHM方法进行描述之后,给出一个受行业启发的模拟示例,以证明AM-PHM的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b19/5520667/296832aff687/nihms875088f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验