Suppr超能文献

智能制造中预测与健康管理系统设计中的系统相互依赖性建模

System Interdependency Modeling in the Design of Prognostic and Health Management Systems in Smart Manufacturing.

作者信息

Malinowski M L, Beling P A, Haimes Y Y, LaViers A, Marvel J A, Weiss B A

机构信息

University of Virginia, Charlottesville, Virginia, 22904, USA.

National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA.

出版信息

Proc Annu Conf Progn Health Manag Soc. 2015;6:038.

Abstract

The fields of risk analysis and prognostics and health management (PHM) have developed in a largely independent fashion. However, both fields share a common core goal. They aspire to manage future adverse consequences associated with prospective dysfunctions of the systems under consideration due to internal or external forces. This paper describes how two prominent risk analysis theories and methodologies - Hierarchical Holographic Modeling (HHM) and Risk Filtering, Ranking, and Management (RFRM) - can be adapted to support the design of PHM systems in the context of smart manufacturing processes. Specifically, the proposed methodologies will be used to identify targets - components, subsystems, or systems - that would most benefit from a PHM system in regards to achieving the following objectives: minimizing cost, minimizing production/maintenance time, maximizing system remaining usable life (RUL), maximizing product quality, and maximizing product output. HHM is a comprehensive modeling theory and methodology that is grounded on the premise that no system can be modeled effectively from a single perspective. It can also be used as an inductive method for scenario structuring to identify emergent forced changes (EFCs) in a system. EFCs connote trends in external or internal sources of risk to a system that may adversely affect specific states of the system. An important aspect of proactive risk management includes bolstering the resilience of the system for specific EFCs by appropriately controlling the states. Risk scenarios for specific EFCs can be the basis for the design of prognostic and diagnostic systems that provide real-time predictions and recognition of scenario changes. The HHM methodology includes visual modeling techniques that can enhance stakeholders' understanding of shared states, resources, objectives and constraints among the interdependent and interconnected subsystems of smart manufacturing systems. In risk analysis, HHM is often paired with Risk Filtering, Ranking, and Management (RFRM). The RFRM process provides the users, (e.g., technology developers, original equipment manufacturers (OEMs), technology integrators, manufacturers), with the most critical risks to the objectives, which can be used to identify the most critical components and subsystems that would most benefit from a PHM system. A case study is presented in which HHM and RFRM are adapted for PHM in the context of an active manufacturing facility located in the United States. The methodologies help to identify the critical risks to the manufacturing process, and the major components and subsystems that would most benefit from a developed PHM system.

摘要

风险分析以及预测与健康管理(PHM)领域在很大程度上是以独立的方式发展起来的。然而,这两个领域有着共同的核心目标。它们致力于管理由于内部或外部力量导致所考虑系统未来出现功能失调而产生的不利后果。本文描述了两种著名的风险分析理论和方法——层次全息建模(HHM)和风险过滤、排序与管理(RFRM)——如何能够被调整以在智能制造过程的背景下支持PHM系统的设计。具体而言,所提出的方法将用于识别在实现以下目标方面最能从PHM系统中受益的目标——组件、子系统或系统:最小化成本、最小化生产/维护时间、最大化系统剩余可用寿命(RUL)、最大化产品质量以及最大化产品产量。HHM是一种全面的建模理论和方法,其前提是不能从单一视角有效地对系统进行建模。它还可以用作一种归纳方法来构建场景,以识别系统中出现的强制变化(EFC)。EFC意味着系统外部或内部风险源的趋势,这些趋势可能对系统的特定状态产生不利影响。主动风险管理的一个重要方面包括通过适当地控制状态来增强系统对特定EFC的恢复力。针对特定EFC的风险场景可以作为预测和诊断系统设计的基础,这些系统可提供对场景变化的实时预测和识别。HHM方法包括可视化建模技术,这些技术可以增强利益相关者对智能制造系统相互依赖和相互连接的子系统之间共享状态、资源、目标和约束的理解。在风险分析中,HHM通常与风险过滤、排序与管理(RFRM)相结合。RFRM过程为用户(例如,技术开发者、原始设备制造商(OEM)、技术集成商、制造商)提供对目标最关键的风险,这些风险可用于识别最能从PHM系统中受益的最关键组件和子系统。本文给出了一个案例研究,其中HHM和RFRM在美国一家现役制造工厂的背景下被应用于PHM。这些方法有助于识别制造过程中的关键风险,以及最能从已开发的PHM系统中受益的主要组件和子系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f65c/5486229/2abe84b05494/nihms866006f1.jpg

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验