Guerra-Rosas Esperanza, Álvarez-Borrego Josué, Angulo-Molina Aracely
Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), División de Física Aplicada, Departamento de Óptica, Carretera Ensenada-Tijuana No. 3918, Fraccionamiento Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
Departamento de Ciencias Químico Biológicas, Universidad de Sonora (UNISON), Luis Encinas y Rosales S/N, Col. Centro, C.P. 83000, Hermosillo, Sonora, Mexico.
Biomed Opt Express. 2017 Mar 15;8(4):2185-2194. doi: 10.1364/BOE.8.002185. eCollection 2017 Apr 1.
In this paper a new methodology to detect and differentiate melanoma cells from normal cells through 1D-signatures averaged variances calculated with a binary mask is presented. The sample images were obtained from histological sections of mice melanoma tumor of 4 [Formula: see text] in thickness and contrasted with normal cells. The results show that melanoma cells present a well-defined range of averaged variances values obtained from the signatures in the four conditions used.
本文提出了一种新方法,通过使用二进制掩码计算的一维签名平均方差来检测黑色素瘤细胞并将其与正常细胞区分开来。样本图像取自厚度为4[公式:见正文]的小鼠黑色素瘤肿瘤组织切片,并与正常细胞进行对比。结果表明,在所用的四种条件下,黑色素瘤细胞呈现出从签名中获得的明确平均方差值范围。