Suppr超能文献

用于心脏动作电位传播的压缩层流光学层析成像的模拟研究

Simulation study on compressive laminar optical tomography for cardiac action potential propagation.

作者信息

Harada Takumi, Tomii Naoki, Manago Shota, Kobayashi Etsuko, Sakuma Ichiro

机构信息

Department of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Department of Precision Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

出版信息

Biomed Opt Express. 2017 Mar 24;8(4):2339-2358. doi: 10.1364/BOE.8.002339. eCollection 2017 Apr 1.

Abstract

To measure the activity of tissue at the microscopic level, laminar optical tomography (LOT), which is a microscopic form of diffuse optical tomography, has been developed. However, obtaining sufficient recording speed to determine rapidly changing dynamic activity remains major challenges. For a high frame rate of the reconstructed data, we here propose a new LOT method using compressed sensing theory, called compressive laminar optical tomography (CLOT), in which novel digital micromirror device-based illumination and data reduction in a single reconstruction are applied. In the simulation experiments, the reconstructed volumetric images of the action potentials that were acquired from 5 measured images with random pattern featured a wave border at least to a depth of 2.5 mm. Consequently, it was shown that CLOT has potential for over 200 fps required for the cardiac electrophysiological phenomena.

摘要

为了在微观层面测量组织的活性,已经开发出了层流光学层析成像(LOT),它是漫射光学层析成像的一种微观形式。然而,要获得足够的记录速度以确定快速变化的动态活性仍然是主要挑战。为了实现重建数据的高帧率,我们在此提出一种使用压缩感知理论的新LOT方法,称为压缩层流光学层析成像(CLOT),其中在单次重建中应用了基于新型数字微镜器件的照明和数据缩减。在模拟实验中,从具有随机模式的5幅测量图像中获取的动作电位的重建体积图像在至少2.5毫米的深度处具有波边界。因此,结果表明CLOT有潜力实现心脏电生理现象所需的超过200帧/秒的帧率。

相似文献

1
Simulation study on compressive laminar optical tomography for cardiac action potential propagation.
Biomed Opt Express. 2017 Mar 24;8(4):2339-2358. doi: 10.1364/BOE.8.002339. eCollection 2017 Apr 1.
2
Snapshot compressive structured illumination microscopy.
Opt Lett. 2024 Jan 15;49(2):186-189. doi: 10.1364/OL.505657.
4
Real-time diffuse optical tomography based on structured illumination.
J Biomed Opt. 2010 Jan-Feb;15(1):016006. doi: 10.1117/1.3290818.
5
Multiple-view diffuse optical tomography system based on time-domain compressive measurements.
Opt Lett. 2017 Jul 15;42(14):2822-2825. doi: 10.1364/OL.42.002822.
6
Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity.
IEEE Trans Med Imaging. 2011 May;30(5):1129-42. doi: 10.1109/TMI.2011.2125983. Epub 2011 Mar 10.
7
Measurement Matrix Construction for Large-area Single Photon Compressive Imaging.
Sensors (Basel). 2019 Jan 24;19(3):474. doi: 10.3390/s19030474.
8
Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography.
Laser Photon Rev. 2009 Feb 1;3(1-2):159-179. doi: 10.1002/lpor.200810031.
9
Accelerating nonlinear reconstruction in laminar optical tomography by use of recursive SVD inversion.
Biomed Opt Express. 2017 Aug 31;8(9):4275-4293. doi: 10.1364/BOE.8.004275. eCollection 2017 Sep 1.
10
Active illumination using a digital micromirror device for quantitative phase imaging.
Opt Lett. 2015 Nov 15;40(22):5407-10. doi: 10.1364/OL.40.005407.

本文引用的文献

2
Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities.
Neurophotonics. 2017 Jan;4(1):011009. doi: 10.1117/1.NPh.4.1.011009. Epub 2016 Nov 14.
3
Structured illumination temporal compressive microscopy.
Biomed Opt Express. 2016 Feb 3;7(3):746-58. doi: 10.1364/BOE.7.000746. eCollection 2016 Mar 1.
4
Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.
Ann Biomed Eng. 2016 Mar;44(3):667-79. doi: 10.1007/s10439-015-1511-4. Epub 2015 Dec 8.
5
High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing.
IEEE Trans Biomed Eng. 2015 Jan;62(1):248-55. doi: 10.1109/TBME.2014.2347284. Epub 2014 Aug 15.
6
Compressed sensing for bioelectric signals: a review.
IEEE J Biomed Health Inform. 2015 Mar;19(2):529-40. doi: 10.1109/JBHI.2014.2327194. Epub 2014 May 29.
7
Surface and intramural reentrant patterns during atrial fibrillation in the sheep.
Methods Inf Med. 2014;53(4):314-9. doi: 10.3414/ME13-02-0047. Epub 2014 May 23.
8
Review of Monte Carlo modeling of light transport in tissues.
J Biomed Opt. 2013 May;18(5):50902. doi: 10.1117/1.JBO.18.5.050902.
10
Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes.
Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H753-65. doi: 10.1152/ajpheart.00404.2012. Epub 2012 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验