Yang Fugang, Ozturk Mehmet S, Zhao Lingling, Cong Wenxiang, Wang Ge, Intes Xavier
IEEE Trans Biomed Eng. 2015 Jan;62(1):248-55. doi: 10.1109/TBME.2014.2347284. Epub 2014 Aug 15.
Mesoscopic fluorescence molecular tomography (MFMT) is new imaging modality aiming at 3-D imaging of molecular probes in a few millimeter thick biological samples with high-spatial resolution. In this paper, we develop a compressive sensing-based reconstruction method with l1-norm regularization for MFMT with the goal of improving spatial resolution and stability of the optical inverse problem. Three-dimensional numerical simulations of anatomically accurate microvasculature and real data obtained from phantom experiments are employed to evaluate the merits of the proposed method. Experimental results show that the proposed method can achieve 80 μm spatial resolution for a biological sample of 3 mm thickness and more accurate quantifications of concentrations and locations for the fluorophore distribution than those of the conventional methods.
介观荧光分子断层扫描(MFMT)是一种新型成像模态,旨在对几毫米厚的生物样本中的分子探针进行三维成像,具有高空间分辨率。在本文中,我们针对MFMT开发了一种基于压缩感知且带有l1范数正则化的重建方法,目的是提高光学逆问题的空间分辨率和稳定性。利用解剖学精确的微血管的三维数值模拟以及从体模实验获得的实际数据来评估所提方法的优点。实验结果表明,对于厚度为3毫米的生物样本,所提方法能够实现80微米的空间分辨率,并且与传统方法相比,能更准确地量化荧光团分布的浓度和位置。