Yu Zhiguo, Johnson Todd R, Kavuluru Ramakanth
Division of Biomedical Informatics, Department of Biostatistics, University of Kentucky, Lexington, Kentucky 40506.
Division of Biomedical Informatics, Depts. of Biostatistics & Computer Science, University of Kentucky, Lexington, Kentucky 40506.
Proc Int Conf Mach Learn Appl. 2013 Dec;2013:440-445. doi: 10.1109/ICMLA.2013.89. Epub 2014 Apr 10.
Given that unstructured data is increasing exponentially everyday, extracting and understanding the information, themes, and relationships from large collections of documents is increasingly important to researchers in many disciplines including biomedicine. Latent Dirichlet Allocation (LDA) is an unsupervised topic modeling technique based on the "bag-of-words" assumption that has been applied extensively to unveil hidden semantic themes within large sets of textual documents. Recently, it was extended using the "bag-of-n-grams" paradigm to account for word order. In this paper, we present an alternative phrase based LDA model to move from a bag of words or n-grams paradigm to a "bag-of-key-phrases" setting by applying a key phrase extraction technique, the C-value method, to further explore latent themes. We evaluate our approach by using a phrase intrusion user study and demonstrate that our model can help LDA generate better and more interpretable topics than those generated using the bag-of-n-grams approach. Given topic models essentially are statistical tools, an important problem in topic modeling is that of visualizing and interacting with the models to understand and extract new information from a collection. To evaluate our phrase based modeling approach in this context, we incorporate it in an open source interactive topic browser. Qualitative evaluations of this browser with biomedical experts demonstrate that our approach can aid biomedical researchers gain better and faster understanding of their document collections.
鉴于非结构化数据每天都在呈指数级增长,从大量文档集合中提取并理解其中的信息、主题及关系,对于包括生物医学在内的许多学科的研究人员而言愈发重要。潜在狄利克雷分配(LDA)是一种基于“词袋”假设的无监督主题建模技术,已被广泛应用于揭示大量文本文档中的隐藏语义主题。最近,它通过“n元语法袋”范式进行了扩展,以考虑词序。在本文中,我们提出了一种基于短语的LDA模型的替代方案,通过应用关键短语提取技术(C值法),从“词袋”或“n元语法袋”范式转向“关键短语袋”设置,以进一步探索潜在主题。我们通过短语侵入用户研究来评估我们的方法,并证明我们的模型比使用“n元语法袋”方法生成的主题能帮助LDA生成更好且更具可解释性的主题。鉴于主题模型本质上是统计工具,主题建模中的一个重要问题是如何对模型进行可视化和交互,以便从文档集合中理解并提取新信息。为了在这种情况下评估我们基于短语的建模方法,我们将其纳入一个开源交互式主题浏览器中。与生物医学专家对该浏览器进行的定性评估表明,我们的方法可以帮助生物医学研究人员更好、更快地理解他们的文档集合。