Suppr超能文献

利用从未结构化病程记录中推断出的主题模型对重症监护病房患者进行风险分层。

Risk stratification of ICU patients using topic models inferred from unstructured progress notes.

作者信息

Lehman Li-wei, Saeed Mohammed, Long William, Lee Joon, Mark Roger

机构信息

Harvard-MIT Health Sciences and Technology, USA.

出版信息

AMIA Annu Symp Proc. 2012;2012:505-11. Epub 2012 Nov 3.

Abstract

We propose a novel approach for ICU patient risk stratification by combining the learned "topic" structure of clinical concepts (represented by UMLS codes) extracted from the unstructured nursing notes with physiologic data (from SAPS-I) for hospital mortality prediction. We used Hierarchical Dirichlet Processes (HDP), a non-parametric topic modeling technique, to automatically discover "topics" as shared groups of co-occurring UMLS clinical concepts. We evaluated the potential utility of the inferred topic structure in predicting hospital mortality using the nursing notes of 14,739 adult ICU patients (mortality 14.6%) from the MIMIC II database. Our results indicate that learned topic structure from the first 24-hour ICU nursing notes significantly improved the performance of the SAPS-I algorithm for hospital mortality prediction. The AUC for predicting hospital mortality from the first 24 hours of physiologic data and nursing text notes was 0.82. Using the physiologic data alone with the SAPS-I algorithm, an AUC of 0.72 was achieved. Thus, the clinical topics that were extracted and used to augment the SAPS-I algorithm significantly improved the performance of the baseline algorithm.

摘要

我们提出了一种用于重症监护病房(ICU)患者风险分层的新方法,该方法通过将从非结构化护理记录中提取的临床概念(由统一医学语言系统(UMLS)代码表示)的学习到的“主题”结构与生理数据(来自简化急性生理学评分系统-I(SAPS-I))相结合,来预测医院死亡率。我们使用分层狄利克雷过程(HDP),一种非参数主题建模技术,自动发现作为同时出现的UMLS临床概念共享组的“主题”。我们使用多中心重症监护信息库-II(MIMIC II)数据库中14739名成年ICU患者(死亡率14.6%)的护理记录,评估了推断出的主题结构在预测医院死亡率方面的潜在效用。我们的结果表明,从ICU前24小时护理记录中学习到的主题结构显著提高了SAPS-I算法预测医院死亡率的性能。根据生理数据和护理文本记录的前24小时预测医院死亡率的曲线下面积(AUC)为0.82。仅使用生理数据和SAPS-I算法时,AUC为0.72。因此,提取并用于增强SAPS-I算法的临床主题显著提高了基线算法的性能。

相似文献

2
Sentiment in nursing notes as an indicator of out-of-hospital mortality in intensive care patients.
PLoS One. 2018 Jun 7;13(6):e0198687. doi: 10.1371/journal.pone.0198687. eCollection 2018.
3
Sentiment Analysis Based on the Nursing Notes on In-Hospital 28-Day Mortality of Sepsis Patients Utilizing the MIMIC-III Database.
Comput Math Methods Med. 2021 Oct 13;2021:3440778. doi: 10.1155/2021/3440778. eCollection 2021.
5
Estimating Patient's Health State Using Latent Structure Inferred from Clinical Time Series and Text.
IEEE EMBS Int Conf Biomed Health Inform. 2017 Feb;2017:449-452. doi: 10.1109/BHI.2017.7897302. Epub 2017 Apr 13.
6
A nursing note-aware deep neural network for predicting mortality risk after hospital discharge.
Int J Nurs Stud. 2024 Aug;156:104797. doi: 10.1016/j.ijnurstu.2024.104797. Epub 2024 May 9.
7
Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach.
Int J Med Inform. 2017 Dec;108:185-195. doi: 10.1016/j.ijmedinf.2017.10.002. Epub 2017 Oct 5.
8
Development of a Mapping Table for Nursing Notes Based on Nurses' Concerns in ICU Patients.
Stud Health Technol Inform. 2024 Jul 24;315:725-726. doi: 10.3233/SHTI240299.
9
A Long Short-Term Memory Ensemble Approach for Improving the Outcome Prediction in Intensive Care Unit.
Comput Math Methods Med. 2019 Nov 3;2019:8152713. doi: 10.1155/2019/8152713. eCollection 2019.

引用本文的文献

1
AD-BERT: Using pre-trained language model to predict the progression from mild cognitive impairment to Alzheimer's disease.
J Biomed Inform. 2023 Aug;144:104442. doi: 10.1016/j.jbi.2023.104442. Epub 2023 Jul 8.
2
Classification of neurologic outcomes from medical notes using natural language processing.
Expert Syst Appl. 2023 Mar 15;214. doi: 10.1016/j.eswa.2022.119171. Epub 2022 Nov 6.
3
Natural Language Processing of Nursing Notes: An Integrative Review.
Comput Inform Nurs. 2023 Jun 1;41(6):377-384. doi: 10.1097/CIN.0000000000000967.
4
Current status and trends in researches based on public intensive care databases: A scientometric investigation.
Front Public Health. 2022 Sep 15;10:912151. doi: 10.3389/fpubh.2022.912151. eCollection 2022.
7
Home Healthcare Clinical Notes Predict Patient Hospitalization and Emergency Department Visits.
Nurs Res. 2020 Nov/Dec;69(6):448-454. doi: 10.1097/NNR.0000000000000470.
8
Keyword extraction and structuralization of medical reports.
Health Inf Sci Syst. 2020 Apr 3;8(1):18. doi: 10.1007/s13755-020-00108-6. eCollection 2020 Dec.
9
Cohort selection for clinical trials using hierarchical neural network.
J Am Med Inform Assoc. 2019 Nov 1;26(11):1203-1208. doi: 10.1093/jamia/ocz099.
10
Making sense of abbreviations in nursing notes: A case study on mortality prediction.
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:275-284. eCollection 2019.

本文引用的文献

1
Probabilistic Topic Models: A focus on graphical model design and applications to document and image analysis.
IEEE Signal Process Mag. 2010 Nov 1;27(6):55-65. doi: 10.1109/MSP.2010.938079.
3
Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database.
Crit Care Med. 2011 May;39(5):952-60. doi: 10.1097/CCM.0b013e31820a92c6.
4
ICU acuity: real-time models versus daily models.
AMIA Annu Symp Proc. 2009 Nov 14;2009:260-4.
6
Semantic classification of diseases in discharge summaries using a context-aware rule-based classifier.
J Am Med Inform Assoc. 2009 Jul-Aug;16(4):580-4. doi: 10.1197/jamia.M3087. Epub 2009 Apr 23.
7
Exploring clinical associations using '-omics' based enrichment analyses.
PLoS One. 2009;4(4):e5203. doi: 10.1371/journal.pone.0005203. Epub 2009 Apr 13.
8
Automated discovery of functional generality of human gene expression programs.
PLoS Comput Biol. 2007 Aug;3(8):e148. doi: 10.1371/journal.pcbi.0030148. Epub 2007 Jun 13.
9
Extracting diagnoses from discharge summaries.
AMIA Annu Symp Proc. 2005;2005:470-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验