Lehman Li-wei, Saeed Mohammed, Long William, Lee Joon, Mark Roger
Harvard-MIT Health Sciences and Technology, USA.
AMIA Annu Symp Proc. 2012;2012:505-11. Epub 2012 Nov 3.
We propose a novel approach for ICU patient risk stratification by combining the learned "topic" structure of clinical concepts (represented by UMLS codes) extracted from the unstructured nursing notes with physiologic data (from SAPS-I) for hospital mortality prediction. We used Hierarchical Dirichlet Processes (HDP), a non-parametric topic modeling technique, to automatically discover "topics" as shared groups of co-occurring UMLS clinical concepts. We evaluated the potential utility of the inferred topic structure in predicting hospital mortality using the nursing notes of 14,739 adult ICU patients (mortality 14.6%) from the MIMIC II database. Our results indicate that learned topic structure from the first 24-hour ICU nursing notes significantly improved the performance of the SAPS-I algorithm for hospital mortality prediction. The AUC for predicting hospital mortality from the first 24 hours of physiologic data and nursing text notes was 0.82. Using the physiologic data alone with the SAPS-I algorithm, an AUC of 0.72 was achieved. Thus, the clinical topics that were extracted and used to augment the SAPS-I algorithm significantly improved the performance of the baseline algorithm.
我们提出了一种用于重症监护病房(ICU)患者风险分层的新方法,该方法通过将从非结构化护理记录中提取的临床概念(由统一医学语言系统(UMLS)代码表示)的学习到的“主题”结构与生理数据(来自简化急性生理学评分系统-I(SAPS-I))相结合,来预测医院死亡率。我们使用分层狄利克雷过程(HDP),一种非参数主题建模技术,自动发现作为同时出现的UMLS临床概念共享组的“主题”。我们使用多中心重症监护信息库-II(MIMIC II)数据库中14739名成年ICU患者(死亡率14.6%)的护理记录,评估了推断出的主题结构在预测医院死亡率方面的潜在效用。我们的结果表明,从ICU前24小时护理记录中学习到的主题结构显著提高了SAPS-I算法预测医院死亡率的性能。根据生理数据和护理文本记录的前24小时预测医院死亡率的曲线下面积(AUC)为0.82。仅使用生理数据和SAPS-I算法时,AUC为0.72。因此,提取并用于增强SAPS-I算法的临床主题显著提高了基线算法的性能。