Liu Jinfeng, He Xiao
Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
Phys Chem Chem Phys. 2017 Aug 9;19(31):20657-20666. doi: 10.1039/c7cp03356g.
Accurate prediction of physicochemical properties of ionic liquids (ILs) is of great significance to understand and design novel ILs with unique properties. This study employed the electrostatically embedded generalized molecular fractionation (EE-GMF) method for accurate energy calculation of IL clusters. The accuracy and efficiency of the EE-GMF method are systematically assessed at different ab initio levels (including HF, DFT and MP2) with diverse basis sets. With the fixed charge model for the embedding field, the deviations of the EE-GMF approach from conventional full system calculations are within 2.58 kcal mol for all IL clusters with up to 30 ion pairs (720 atoms), tested in this study. Moreover, this linear-scaling fragment quantum mechanical (QM) method can significantly reduce the total computational cost for post-HF methods. The EE-GMF approach is well-suited for studying the energetic, structural and dynamical properties of ILs using high-level ab initio theories.
准确预测离子液体(ILs)的物理化学性质对于理解和设计具有独特性质的新型离子液体具有重要意义。本研究采用静电嵌入广义分子分馏(EE-GMF)方法对离子液体团簇进行精确的能量计算。在不同的从头算水平(包括HF、DFT和MP2)以及不同的基组下,系统地评估了EE-GMF方法的准确性和效率。对于本研究中测试的所有离子对数量高达30对(720个原子)的离子液体团簇,在固定电荷模型的嵌入场下,EE-GMF方法与传统全系统计算的偏差在2.58千卡/摩尔以内。此外,这种线性缩放的片段量子力学(QM)方法可以显著降低后HF方法的总计算成本。EE-GMF方法非常适合使用高水平的从头算理论来研究离子液体的能量、结构和动力学性质。