Department of Materials Science, Jilin University , Changchun 130012, China.
Department of Engineering and System Science, National Tsing Hua University , Kuang-Fu Road, Hsinchu 30013, Taiwan.
ACS Nano. 2017 Aug 22;11(8):8018-8025. doi: 10.1021/acsnano.7b02656. Epub 2017 Jul 27.
Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16-19 orders of magnitude, equivalent to a reduction of 0.97-1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.
金属氧化物的溶解对于理解矿物演化和微加工氧化物功能材料至关重要。一般来说,金属氧化物的溶解是一个缓慢且低效的化学反应。在这里,通过引入氧空位来改变氧化物的表面化学性质,我们可以在液相环境透射电子显微镜(LETEM)中实时观察到,促进金属氧化物在水中的溶解动力学。与在酸中正常溶解相比,溶解速率常数显著增加了 16-19 个数量级,相当于活化能降低了 0.97-1.11eV。高分辨率透射电子显微镜成像、电子能量损失谱和第一性原理计算都证明了这一点,其中通过电子辐照,改变的水化学和表面氧空位之间的局部互用性动态改变了金属氧化物的溶解途径。这一发现启发了在环保水溶剂中对金属氧化物薄膜进行高效电子光刻的方法的发展,为纳米器件制造提供了先进技术。