Suppr超能文献

Interbasin water transfer for the rehabilitation of a transboundary Mediterranean stream: An economic analysis.

作者信息

Akron Ariel, Ghermandi Andrea, Dayan Tamar, Hershkovitz Yaron

机构信息

The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, 6997801, Israel.

Dept. of Natural Resources and Environmental Management, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 3498838, Israel.

出版信息

J Environ Manage. 2017 Nov 1;202(Pt 1):276-286. doi: 10.1016/j.jenvman.2017.07.043. Epub 2017 Jul 21.

Abstract

Global demand for freshwater is increasing as human population grows, climate changes and water resources are being overexploited. Consequently, many freshwater ecosystems, particularly in water-stressed regions, are severely degraded. Here we present a unique case of an Interbasin Water Transfer (IWT) project aiming at ecosystem rehabilitation and recreation enhancement of an intermittent transboundary stream (Ayun, Israel). For the past century, water diversion at the Lebanese side had led to flow secession in the Israeli Ayun Nature Reserve during the dry season (May-November). To restore flow continuum, a sum of 0.5 million cubic meters of high quality freshwaters have been allocated annually during the dry months. The aim of this study is to evaluate the IWT project by: (1) examining the correlation between water flow in the Ayun and recreational visitation, and (2) performing a cost-benefit analysis of the IWT scheme, including non-market benefits. A time-series regression (Adj. R = 0.688, n = 125) shows that a 10% increase in water flow corresponds to a 2.1% increase in monthly visitors. An estimated 18.8% of the visitation rate between 2009 and 2015 can be attributed to the water reallocation project. Through a single-site travel cost model, we estimate the visitor's willingness to pay in US$ 37.8 per person per trip. When non-market benefits for recreation are included, the total benefits of the IWT project substantially exceed its costs. Our results suggest that IWT can be applied to restore water flow and enhance ecosystem services also in water-stressed regions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验