He Wei, Felderman Martina, Evans Angela C, Geng Jia, Homan David, Bourguet Feliza, Fischer Nicholas O, Li Yuanpei, Lam Kit S, Noy Aleksandr, Xing Li, Cheng R Holland, Rasley Amy, Blanchette Craig D, Kamrud Kurt, Wang Nathaniel, Gouvis Heather, Peterson Todd C, Hubby Bolyn, Coleman Matthew A
From the Lawrence Livermore National Laboratory, Livermore, California 94550.
Synthetic Genomics Vaccine Inc., La Jolla, California 92037.
J Biol Chem. 2017 Sep 8;292(36):15121-15132. doi: 10.1074/jbc.M117.784561. Epub 2017 Jul 24.
Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. infection, therefore, constitutes a significant public health threat, underscoring the need for a -specific vaccine. strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, and protein misfolding. Here, we used an -based cell-free system to express a MOMP protein from the mouse-specific species (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP-tNLP). The cell-free expressed mMOMP-tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP-tNLP complex in a 1-ml cell-free reaction. The mMOMP-tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP-tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.
衣原体是一种常见的性传播疾病,全球感染人数超过1亿。虽然大多数感染者最初没有症状,但如果不进行诊断,症状可能会出现。长期感染会导致诸如盆腔炎、不孕和失明等使人衰弱的疾病。因此,衣原体感染构成了重大的公共卫生威胁,凸显了开发衣原体特异性疫苗的必要性。衣原体菌株表达一种主要外膜蛋白(MOMP),该蛋白已被证明是一种有效的疫苗抗原。然而,用于疫苗开发生产功能性重组MOMP蛋白的方法受到溶解度差、产量低和蛋白错误折叠的限制。在这里,我们使用基于大肠杆菌的无细胞系统来表达来自小鼠特异性物种肺炎衣原体(MoPn-MOMP或mMOMP)的MOMP蛋白。密码子优化的mMOMP基因与Δ49载脂蛋白A1(Δ49ApoA1)共同翻译,Δ49ApoA1是小鼠载脂蛋白A1的截短版本,其中N端49个氨基酸被去除。这种共同翻译过程产生了由端树枝状聚合物纳米脂蛋白颗粒(mMOMP-tNLP)支持的mMOMP。无细胞表达的mMOMP-tNLPs包含与天然MOMP蛋白相似的mMOMP多聚体。这个无细胞过程在体积为1毫升的无细胞反应中平均产生1.5毫克纯化的、水溶性的mMOMP-tNLP复合物。mMOMP-tNLP颗粒还容纳了单链合成DNA佐剂CpG寡脱氧核苷酸1826的共定位,在接种疫苗的小鼠中引发了增强的体液免疫反应。使用我们的mMOMP-tNLP制剂,我们展示了一种用于溶解和施用膜结合蛋白以用于未来疫苗开发的独特方法。这种方法可以应用于其他以前难以获得的抗原,同时保持其全部功能和免疫原性。