Huang Chang-Yen, Wang Ruei-Chi, Hsu Tzy-Shyuan, Hung Tzu-Ning, Shen Ming-Yan, Chang Chung-Heng, Wu Hsuan-Chen
Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC).
ACS Synth Biol. 2025 May 16;14(5):1829-1842. doi: 10.1021/acssynbio.5c00241. Epub 2025 Apr 21.
Spider silk spidroins, nature's advanced polymers, have long hampered efficient production due to their considerable size, repetitive sequences, and aggregation-prone nature. This study harnesses the power of a cell-free protein synthesis (CFPS) system, presenting the first successful production and detailed characterization of recombinant spider silk major ampullate spidroins (MaSps) utilizing a reformulated and optimized based CFPS system. Through systematic optimization, including cell strain engineering via knockout generation, energy sources, crowding agents, and amino acid supplementation, we effectively addressed the specific challenges associated with recombinant spidroin biosynthesis, resulting in high yields of 0.61 mg/mL for MaSp1 (69 kDa) and 0.52 mg/mL for MaSp2 (73 kDa). The synthesized spidroins self-assembled into micelles, facilitating efficient purification compared to methods, and were further processed into prototype silk fiber products. The functional characterization demonstrated that the purified spidroins maintain essential natural properties, such as phase separation and fiber formation triggered by pH and ions. This tailored CFPS platform also facilitates versatile cosynthesis and serves as an accessible platform for studying the supramolecular coassembly and dynamic interactions among spidroins. This CFPS platform offers a viable alternative to conventional methods, facilitating innovative approaches for silk protein engineering and biomaterial development in a high-throughput, efficient manner.
蜘蛛丝蛋白,自然界中的高级聚合物,长期以来因其巨大的尺寸、重复序列和易于聚集的特性而阻碍了高效生产。本研究利用无细胞蛋白质合成(CFPS)系统的力量,首次成功生产并详细表征了重组蜘蛛丝大壶状腺丝蛋白(MaSps),该系统基于重新配方和优化的CFPS系统。通过系统优化,包括通过基因敲除进行细胞株工程改造、能源、拥挤剂和氨基酸补充,我们有效解决了与重组丝蛋白生物合成相关的特定挑战,MaSp1(69 kDa)的产量高达0.61 mg/mL,MaSp2(73 kDa)的产量高达0.52 mg/mL。合成的丝蛋白自组装成胶束,与其他方法相比便于高效纯化,并进一步加工成原型丝纤维产品。功能表征表明,纯化的丝蛋白保留了基本的天然特性,如由pH值和离子引发的相分离和纤维形成。这个定制的CFPS平台还便于进行多功能共合成,并作为一个易于使用的平台来研究丝蛋白之间的超分子共组装和动态相互作用。这个CFPS平台为传统方法提供了一个可行的替代方案,以高通量、高效的方式促进丝蛋白工程和生物材料开发的创新方法。