Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1FD, UK.
School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK.
Sci Rep. 2017 Jul 24;7(1):6256. doi: 10.1038/s41598-017-06545-w.
Engineering apparatus that harness quantum theory promises to offer practical advantages over current technology. A fundamentally more powerful prospect is that such quantum technologies could out-perform any future iteration of their classical counterparts, no matter how well the attributes of those classical strategies can be improved. Here, for optical direct absorption measurement, we experimentally demonstrate such an instance of an absolute advantage per photon probe that is exposed to the absorbative sample. We use correlated intensity measurements of spontaneous parametric downconversion using a commercially available air-cooled CCD, a new estimator for data analysis and a high heralding efficiency photon-pair source. We show this enables improvement in the precision of measurement, per photon probe, beyond what is achievable with an ideal coherent state (a perfect laser) detected with 100% efficient and noiseless detection. We see this absolute improvement for up to 50% absorption, with a maximum observed factor of improvement of 1.46. This equates to around 32% reduction in the total number of photons traversing an optical sample, compared to any future direct optical absorption measurement using classical light.
利用量子理论的工程仪器有望提供优于当前技术的实际优势。一个更基本的前景是,这种量子技术可能会超越任何未来版本的同类经典技术,无论这些经典策略的属性如何改进。在这里,对于光学直接吸收测量,我们实验证明了在吸收样品中暴露的每个光子探针都具有绝对优势的实例。我们使用市售的空气冷却 CCD 进行自发参量下转换的相关强度测量,使用新的数据分析估计器和高效的 Heralding 光子对源。我们表明,这使得每个光子探针的测量精度都得到了提高,超过了使用 100%效率和无噪声检测的理想相干态(完美激光)所能达到的精度。我们在高达 50%的吸收率下看到了这种绝对的提高,最大观察到的提高因子为 1.46。这相当于与任何未来使用经典光进行的直接光学吸收测量相比,穿过光学样品的总光子数减少了约 32%。