Hsieh Sheng-Kuo, Yu Yu-Jen, Tang Nou-Ying, Lin Jhao-Ren, Jinn Tzyy-Rong
School of Chinese Medicine, China Medical University, Taichung. Taiwan.
Department of Pediatrics, Changhua Christian Hospital, Changhua. Taiwan.
Protein Pept Lett. 2017;24(11):1021-1029. doi: 10.2174/0929866524666170724161900.
Mastoparan B (MPB) is a venom peptide isolated from Vespa basalis (black-bellied hornet), one of the dangerous vespine wasps found in Taiwan. MPB is a tetradecapeptide (LKLKSIVSWAKKVL), amphiphilic venom peptide, with a molecular mass of 1.6 kDa. MPB belongs to an evolutionarily conserved component of the innate immune response against microbes. In this study, we attempted to modify a reliable oleosin-based fusion expression strategy coupled with the artificial oil body (AOB)-cyanogen bromide (CNBr) platform to produce bioactive MPB.
The aim of this study was to develop an artificial oil body (AOB)-cyanogen bromide (CNBr) platform to produce the bioactive form of mastoparan B (MPB), which in a manner identical to that of its native counterpart.
The plasmid pET30-His6-rOle(127M→L)-MPB was constructed, and then four different E. coli strains- BL21(DE3), BL21(DE3)pLysS, C41(DE3), and C43(DE3) were tested to identify the most suitable host for the pET30-His6-rOle(127M→L)-MPB fusion protein expression. We optimized the expression conditions by testing different growth temperatures, isopropyl-β-D-thiogalactoside (IPTG) concentrations, and post-induction collection times. Afterwards, the His6-rOle(127M→L)-MPB protein was purified by one-step nickel-chelated affinity chromatography (Ni2+-NTA) under denaturing conditions. The purified His6-rOle(127M→L)-MPB was selectively cleaved by thrombin protease to remove the His6-tag and the leader peptide from the N-terminus. Subsequently, rOle(127M→L)-MPB protein was constituted into AOB and incubated with CNBr for a cleavage reaction, which resulted in the release of the MPB from rOle(127M→L)-MPB protein via AOB. The purified MPB was identified by MALDI-MS and HPLC analysis, and its bioactivity was examined by antimicrobial testing.
After a 2-h induction period, the E. coli C43(DE3) was found to be superior to BL21(DE3) and the other protease-deficient strains as an expression host. And, the optimal His6-rOle(127M→L)-MPB expression at 37°C for 2 h after induction with 5 µM IPTG. The purified MPB showed that a single major peak was detected by HPLC/UV detection with a retention time of 22.5 minutes, which was approximately 90% pure. The putative MPB, and over two-third of the peptide sequence was verified by the MALDI-MS analysis. Finally, the purified MPB was examined by a broth dilution-antimicrobial susceptibility test. These results indicated that the purified MPB was bioactive and very effective in anti-bacterial (E. coli J96) activity. Here, we successfully used the oleosin-based fusion expression strategy coupled with the artificial oil body (AOB)-cyanogen bromide (CNBr) platform to produce bioactive MPB peptide which, in a manner identical to that of its native counterpart.
In this study, the recombinant oleosin based fusion strategy coupled with AOB-CNBr purification platform open a new avenue for the production of active MPB and facilitate the studies and applications of the peptide in the future for medicinal applications such as hypotension and antibacterial effect.
马蜂肽B(MPB)是从台湾发现的危险胡蜂之一——黑腹胡蜂中分离出的一种毒液肽。MPB是一种十四肽(LKLKSIVSWAKKVL),为两亲性毒液肽,分子量为1.6 kDa。MPB属于针对微生物的固有免疫反应中进化保守的成分。在本研究中,我们尝试改进一种基于油质体的可靠融合表达策略,并结合人工油体(AOB)-溴化氰(CNBr)平台来生产具有生物活性的MPB。
本研究旨在开发一种人工油体(AOB)-溴化氰(CNBr)平台,以生产与天然形式相同的具有生物活性的马蜂肽B(MPB)。
构建质粒pET30-His6-rOle(127M→L)-MPB,然后测试四种不同的大肠杆菌菌株——BL21(DE3)、BL21(DE3)pLysS、C41(DE3)和C43(DE3),以确定最适合pET30-His6-rOle(127M→L)-MPB融合蛋白表达的宿主。我们通过测试不同的生长温度、异丙基-β-D-硫代半乳糖苷(IPTG)浓度和诱导后收集时间来优化表达条件。之后,在变性条件下通过一步镍螯合亲和层析(Ni2+-NTA)纯化His6-rOle(127M→L)-MPB蛋白。用凝血酶蛋白酶选择性切割纯化后的His6-rOle(127M→L)-MPB,从N端去除His6标签和前导肽。随后,将rOle(127M→L)-MPB蛋白组装到AOB中,并与CNBr孵育进行切割反应,从而通过AOB从rOle(127M→L)-MPB蛋白中释放出MPB。通过基质辅助激光解吸电离质谱(MALDI-MS)和高效液相色谱(HPLC)分析鉴定纯化后的MPB,并通过抗菌测试检测其生物活性。
诱导2小时后,发现大肠杆菌C43(DE3)作为表达宿主优于BL21(DE3)和其他蛋白酶缺陷菌株。并且,用5 μM IPTG诱导后,His6-rOle(127M→L)-MPB在37°C表达2小时为最佳。纯化后的MPB经HPLC/UV检测显示,在保留时间为22.5分钟时检测到一个单一主峰,纯度约为90%。通过MALDI-MS分析验证了推定的MPB以及超过三分之二的肽序列。最后,通过肉汤稀释抗菌药敏试验检测纯化后的MPB。这些结果表明,纯化后的MPB具有生物活性,对大肠杆菌J96具有非常有效的抗菌活性。在此,我们成功地利用基于油质体的融合表达策略结合人工油体(AOB)-溴化氰(CNBr)平台生产出了具有生物活性的MPB肽,其方式与天然对应物相同。
在本研究中,基于重组油质体的融合策略与AOB-CNBr纯化平台为活性MPB的生产开辟了一条新途径,并有助于该肽在未来用于低血压和抗菌作用等医学应用方面的研究和应用。