Suppr超能文献

开发一种虚拟细胞模型来预测细胞对基底形貌的反应。

Development of a Virtual Cell Model to Predict Cell Response to Substrate Topography.

机构信息

Department of Physics, Sharif University of Technology , Tehran, 11155-9161, Iran.

Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany.

出版信息

ACS Nano. 2017 Sep 26;11(9):9084-9092. doi: 10.1021/acsnano.7b03732. Epub 2017 Jul 30.

Abstract

Cells can sense and respond to changes in the topographical, chemical, and mechanical information in their environment. Engineered substrates are increasingly being developed that exploit these physical attributes to direct cell responses (most notably mesenchymal stem cells) and therefore control cell behavior toward desired applications. However, there are very few methods available for robust and accurate modeling that can predict cell behavior prior to experimental evaluations, and this typically means that many cell test iterations are needed to identify best material features. Here, we developed a unifying computational framework to create a multicomponent cell model, called the "virtual cell model" that has the capability to predict changes in whole cell and cell nucleus characteristics (in terms of shape, direction, and even chromatin conformation) on a range of cell substrates. Modeling data were correlated with cell culture experimental outcomes in order to confirm the applicability of the virtual cell model and demonstrating the ability to reflect the qualitative behavior of mesenchymal stem cells. This may provide a reliable, efficient, and fast high-throughput approach for the development of optimized substrates for a broad range of cellular applications including stem cell differentiation.

摘要

细胞能够感知并响应其环境中拓扑、化学和机械信息的变化。人们越来越多地开发出利用这些物理特性来指导细胞反应(尤其是间充质干细胞)的工程化基质,从而控制细胞对预期应用的行为。然而,目前几乎没有可靠和准确的建模方法可以在实验评估之前预测细胞行为,这通常意味着需要进行多次细胞测试迭代才能确定最佳材料特性。在这里,我们开发了一个统一的计算框架来创建一个多组件细胞模型,称为“虚拟细胞模型”,该模型能够预测一系列细胞基质上整个细胞和细胞核特征(在形状、方向甚至染色质构象方面)的变化。为了验证虚拟细胞模型的适用性并展示其反映间充质干细胞定性行为的能力,将模型数据与细胞培养实验结果相关联。这可能为广泛的细胞应用(包括干细胞分化)的优化基质的开发提供一种可靠、高效和快速的高通量方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验