Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, IA, 52242, USA.
Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
Med Phys. 2017 Oct;44(10):5384-5392. doi: 10.1002/mp.12486. Epub 2017 Sep 11.
To provide a fast computational method, based on the proximal graph solver (POGS) - A convex optimization solver using the alternating direction method of multipliers (ADMM), for calculating an optimal treatment plan in rotating shield brachytherapy (RSBT). RSBT treatment planning has more degrees of freedom than conventional high-dose-rate brachytherapy due to the addition of emission direction, and this necessitates a fast optimization technique to enable clinical usage.
The multi-helix RSBT (H-RSBT) delivery technique was investigated for five representative cervical cancer patients. Treatment plans were generated for all patients using the POGS method and the commercially available solver IBM ILOG CPLEX. The rectum, bladder, sigmoid colon, high-risk clinical target volume (HR-CTV), and HR-CTV boundary were the structures included in our optimization, which applied an asymmetric dose-volume optimization with smoothness control. Dose calculation resolution was 1 × 1 × 3 mm for all cases. The H-RSBT applicator had 6 helices, with 33.3 mm of translation along the applicator per helical rotation and 1.7 mm spacing between dwell positions, yielding 17.5° emission angle spacing per 5 mm along the applicator.
For each patient, HR-CTV D , HR-CTV D , rectum D , sigmoid D , and bladder D matched within 1% for CPLEX and POGS methods. Also, similar EQD2 values between CPLEX and POGS methods were obtained. POGS was around 18 times faster than CPLEX. For all patients, total optimization times were 32.1-65.4 s for CPLEX and 2.1-3.9 s for POGS.
POGS reduced treatment plan optimization time approximately 18 times for RSBT with similar HR-CTV D , organ at risk (OAR) D values, and EQD2 values compared to CPLEX, which is significant progress toward clinical translation of RSBT.
提供一种快速计算方法,基于近端图求解器(POGS)——一种使用交替方向乘子法(ADMM)的凸优化求解器,用于计算旋转屏蔽近距离治疗(RSBT)中的最佳治疗计划。由于增加了发射方向,RSBT 治疗计划比传统的高剂量率近距离治疗具有更多的自由度,这需要一种快速优化技术来实现临床应用。
研究了用于 5 名代表性宫颈癌患者的多螺旋 RSBT(H-RSBT)输送技术。使用 POGS 方法和商业上可用的求解器 IBM ILOG CPLEX 为所有患者生成治疗计划。直肠、膀胱、乙状结肠、高危临床靶区(HR-CTV)和 HR-CTV 边界是我们优化的结构,应用了具有平滑度控制的不对称剂量-体积优化。所有病例的剂量计算分辨率为 1×1×3mm。H-RSBT 施源器有 6 个螺旋,每个螺旋沿施源器平移 33.3mm,每个驻留位置之间的间隔为 1.7mm,沿施源器每 5mm 有 17.5°的发射角间隔。
对于每个患者,CPLEX 和 POGS 方法的 HR-CTV D 、HR-CTV D 、直肠 D 、乙状结肠 D 和膀胱 D 匹配度在 1%以内。此外,CPLEX 和 POGS 方法也得到了相似的 EQD2 值。POGS 比 CPLEX 快约 18 倍。对于所有患者,CPLEX 的总优化时间为 32.1-65.4s,POGS 为 2.1-3.9s。
与 CPLEX 相比,POGS 使 RSBT 的治疗计划优化时间减少了约 18 倍,同时保持了相似的 HR-CTV D 、危及器官(OAR)D 值和 EQD2 值,这是 RSBT 向临床转化的重大进展。