Suppr超能文献

近端算子图求解器在放射治疗逆向治疗计划中的应用。

Use of proximal operator graph solver for radiation therapy inverse treatment planning.

作者信息

Liu Xinmin, Pelizzari Charles, Belcher Andrew H, Grelewicz Zachary, Wiersma Rodney D

机构信息

Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, 60637, USA.

出版信息

Med Phys. 2017 Apr;44(4):1246-1256. doi: 10.1002/mp.12165.

Abstract

PURPOSE

Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi-Newton methods such as the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. However, several next generation planning techniques such as total variation regularization- based optimization and MV+kV optimization, involve constrained or mixed-norm optimization, and cannot be solved by quasi-Newton methods. Using standard optimization algorithms on such problems often leads to prohibitively long optimization times and large memory requirements. This work investigates the use of a recently developed proximal operator graph solver (POGS) in solving such radiation therapy optimization problems.

METHODS

Radiation therapy inverse treatment planning was formulated as a graph form problem, and the proximal operators of POGS for quadratic optimization were derived. POGS was exploited for the first time to impose hard dose constraints along with soft constraints in the objective function. The solver was applied to several clinical treatment sites (TG119, liver, prostate, and head&neck), and the results were compared to the solutions obtained by other commercial and non-commercial optimizers.

RESULTS

For inverse planning optimization with nonnegativity box constraints on beamlet intensity, the speed of POGS can compete with that of LBFGSB in some situations. For constrained and mixed-norm optimization, POGS is about one or two orders of magnitude faster than the other solvers while requiring less computer memory.

CONCLUSIONS

POGS was used for solving inverse treatment planning problems involving constrained or mixed-norm formulation on several example sites. This approach was found to improve upon standard solvers in terms of computation speed and memory usage, and is capable of solving traditionally difficult problems, such as total variation regularization-based optimization and combined MV+kV optimization.

摘要

目的

大多数放射治疗优化问题可被表述为无约束问题,并通过诸如有限内存布罗伊登-弗莱彻-戈德法布-沙诺(L-BFGS)算法等拟牛顿法有效求解。然而,一些下一代计划技术,如基于总变差正则化的优化和MV+kV优化,涉及约束或混合范数优化,无法通过拟牛顿法求解。在此类问题上使用标准优化算法通常会导致过长的优化时间和巨大的内存需求。本研究探讨使用最近开发的近端算子图求解器(POGS)来解决此类放射治疗优化问题。

方法

将放射治疗逆向治疗计划表述为图形式问题,并推导了POGS用于二次优化的近端算子。首次利用POGS在目标函数中施加硬剂量约束以及软约束。将该求解器应用于多个临床治疗部位(TG119、肝脏、前列腺和头颈部),并将结果与其他商业和非商业优化器得到的解进行比较。

结果

对于在子野强度上具有非负盒约束的逆向计划优化,在某些情况下POGS的速度可与LBFGSB相媲美。对于约束和混合范数优化,POGS比其他求解器快约一到两个数量级,同时所需计算机内存更少。

结论

POGS用于解决多个示例部位上涉及约束或混合范数公式的逆向治疗计划问题。发现该方法在计算速度和内存使用方面优于标准求解器,并且能够解决传统上困难的问题,如基于总变差正则化的优化和联合MV+kV优化。

相似文献

1
Use of proximal operator graph solver for radiation therapy inverse treatment planning.
Med Phys. 2017 Apr;44(4):1246-1256. doi: 10.1002/mp.12165.
2
Efficient IMRT inverse planning with a new L1-solver: template for first-order conic solver.
Phys Med Biol. 2012 Jul 7;57(13):4139-53. doi: 10.1088/0031-9155/57/13/4139. Epub 2012 Jun 8.
3
Fast dose optimization for rotating shield brachytherapy.
Med Phys. 2017 Oct;44(10):5384-5392. doi: 10.1002/mp.12486. Epub 2017 Sep 11.
4
Iterative regularization in intensity-modulated radiation therapy optimization.
Med Phys. 2006 Jan;33(1):225-34. doi: 10.1118/1.2148918.
5
A comparison of three optimization algorithms for intensity modulated radiation therapy.
Z Med Phys. 2008;18(2):111-9. doi: 10.1016/j.zemedi.2007.12.001.
6
Combined MV + kV inverse treatment planning for optimal kV dose incorporation in IGRT.
Phys Med Biol. 2014 Apr 7;59(7):1607-21. doi: 10.1088/0031-9155/59/7/1607. Epub 2014 Mar 10.
7
Total-variation regularization based inverse planning for intensity modulated arc therapy.
Technol Cancer Res Treat. 2012 Apr;11(2):149-62. doi: 10.7785/tcrt.2012.500244.
8
Economical quasi-Newton unitary optimization of electronic orbitals.
Phys Chem Chem Phys. 2024 Feb 22;26(8):6557-6573. doi: 10.1039/d3cp05557d.
9
Multi-GPU implementation of a VMAT treatment plan optimization algorithm.
Med Phys. 2015 Jun;42(6):2841-52. doi: 10.1118/1.4919742.
10
Using total-variation regularization for intensity modulated radiation therapy inverse planning with field-specific numbers of segments.
Phys Med Biol. 2008 Dec 7;53(23):6653-72. doi: 10.1088/0031-9155/53/23/002. Epub 2008 Nov 7.

引用本文的文献

1
A conceptual study on real-time adaptive radiation therapy optimization through ultra-fast beamlet control.
Biomed Phys Eng Express. 2019 Aug;5(5). doi: 10.1088/2057-1976/ab3ba9. Epub 2019 Aug 30.
2
Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems.
PLoS One. 2019 Jan 11;14(1):e0210385. doi: 10.1371/journal.pone.0210385. eCollection 2019.
3
Teaching treatment planning for protons with educational open-source software: experience with FoCa and matRad.
J Appl Clin Med Phys. 2018 Jul;19(4):302-306. doi: 10.1002/acm2.12326. Epub 2018 May 12.
4
Fast dose optimization for rotating shield brachytherapy.
Med Phys. 2017 Oct;44(10):5384-5392. doi: 10.1002/mp.12486. Epub 2017 Sep 11.

本文引用的文献

1
Optimization of rotational arc station parameter optimized radiation therapy.
Med Phys. 2016 Sep;43(9):4973. doi: 10.1118/1.4960000.
2
A comprehensive formulation for volumetric modulated arc therapy planning.
Med Phys. 2016 Jul;43(7):4263. doi: 10.1118/1.4953832.
3
Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization.
Phys Med Biol. 2016 Apr 7;61(7):2838-50. doi: 10.1088/0031-9155/61/7/2838. Epub 2016 Mar 17.
5
Dose domain regularization of MLC leaf patterns for highly complex IMRT plans.
Med Phys. 2015 Apr;42(4):1858-70. doi: 10.1118/1.4915286.
6
Shared data for intensity modulated radiation therapy (IMRT) optimization research: the CORT dataset.
Gigascience. 2014 Dec 12;3(1):37. doi: 10.1186/2047-217X-3-37. eCollection 2014.
8
Combined MV + kV inverse treatment planning for optimal kV dose incorporation in IGRT.
Phys Med Biol. 2014 Apr 7;59(7):1607-21. doi: 10.1088/0031-9155/59/7/1607. Epub 2014 Mar 10.
9
GPU-based high-performance computing for radiation therapy.
Phys Med Biol. 2014 Feb 21;59(4):R151-82. doi: 10.1088/0031-9155/59/4/R151. Epub 2014 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验