Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, 80045, USA.
Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO, 63110, USA.
J Physiol. 2017 Oct 1;595(19):6327-6348. doi: 10.1113/JP274565. Epub 2017 Aug 18.
Pharmacological, molecular and genetic data indicate a prominent role of low-voltage-activated T-type calcium channels (T-channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T-channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization-induced burst firing. Our molecular studies showed that Ca 3.1 is the most abundantly expressed isoform of T-channels in the rat subiculum. Consistent with this finding, both regular-spiking and burst firing patterns were profoundly depressed in the mouse with global deletion of Ca 3.1 isoform of T-channels. Selective inhibition of T-channels and global deletion of Ca 3.1 channels completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway.
Several studies suggest that voltage-gated calcium currents are involved in generating high frequency burst firing in the subiculum, but the exact nature of these currents remains unknown. Here, we used selective pharmacology, molecular and genetic approaches to implicate Cav3.1-containing T-channels in subicular burst firing, in contrast to several previous reports discounting T-channels as major contributors to subicular neuron physiology. Furthermore, pharmacological antagonism of T-channels, as well as global deletion of CaV3.1 isoform, completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway. Our results indicate that excitability and synaptic plasticity of subicular neurons relies heavily on T-channels. Hence, T-channels may be a promising new drug target for different cognitive deficits.
药理学、分子和遗传学数据表明,低电压激活 T 型钙通道(T 型通道)在海马下区的锥体神经元和抑制性中间神经元的放电活动中起主要作用。T 型通道的药理学抑制作用将较低去极化刺激下的爆发性放电转换为规则性放电,并完全消除了超极化诱导的爆发性放电。我们的分子研究表明,在大鼠海马下区,Ca 3.1 是 T 型通道表达最丰富的同工型。与这一发现一致的是,在 Ca 3.1 同工型 T 型通道的全球缺失小鼠中,规则性放电和爆发性放电模式都明显受到抑制。T 型通道的选择性抑制和 Ca 3.1 通道的全球缺失完全抑制了 CA1-海马下区的长时程增强(LTP)的发展,但对 CA3-CA1 通路没有影响。
几项研究表明,电压门控钙电流参与了海马下区高频爆发性放电的产生,但这些电流的确切性质仍不清楚。在这里,我们使用选择性药理学、分子和遗传方法表明,Cav3.1 包含的 T 型通道参与了海马下区的爆发性放电,这与之前的一些否定 T 型通道是海马下区神经元生理学主要贡献者的报道形成了对比。此外,T 型通道的药理学拮抗作用以及 CaV3.1 同工型的全球缺失,完全抑制了 CA1-海马下区 LTP 的发展,但对 CA3-CA1 通路没有影响。我们的结果表明,海马下区神经元的兴奋性和突触可塑性严重依赖于 T 型通道。因此,T 型通道可能是治疗不同认知障碍的一个有前途的新药物靶点。