Suppr超能文献

探索线粒体解偶联蛋白4在脑代谢中的作用:对阿尔茨海默病的启示

Exploring the role of mitochondrial uncoupling protein 4 in brain metabolism: implications for Alzheimer's disease.

作者信息

Crivelli Simone M, Gaifullina Aisylu, Chatton Jean-Yves

机构信息

Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.

出版信息

Front Neurosci. 2024 Sep 24;18:1483708. doi: 10.3389/fnins.2024.1483708. eCollection 2024.

Abstract

The brain's high demand for energy necessitates tightly regulated metabolic pathways to sustain physiological activity. Glucose, the primary energy substrate, undergoes complex metabolic transformations, with mitochondria playing a central role in ATP production via oxidative phosphorylation. Dysregulation of this metabolic interplay is implicated in Alzheimer's disease (AD), where compromised glucose metabolism, oxidative stress, and mitochondrial dysfunction contribute to disease progression. This review explores the intricate bioenergetic crosstalk between astrocytes and neurons, highlighting the function of mitochondrial uncoupling proteins (UCPs), particularly UCP4, as important regulators of brain metabolism and neuronal function. Predominantly expressed in the brain, UCP4 reduces the membrane potential in the inner mitochondrial membrane, thereby potentially decreasing the generation of reactive oxygen species. Furthermore, UCP4 mitigates mitochondrial calcium overload and sustains cellular ATP levels through a metabolic shift from mitochondrial respiration to glycolysis. Interestingly, the levels of the neuronal UCPs, UCP2, 4 and 5 are significantly reduced in AD brain tissue and a specific UCP4 variant has been associated to an increased risk of developing AD. Few studies modulating the expression of UCP4 in astrocytes or neurons have highlighted protective effects against neurodegeneration and aging, suggesting that pharmacological strategies aimed at activating UCPs, such as protonophoric uncouplers, hold promise for therapeutic interventions in AD and other neurodegenerative diseases. Despite significant advances, our understanding of UCPs in brain metabolism remains in its early stages, emphasizing the need for further research to unravel their biological functions in the brain and their therapeutic potential.

摘要

大脑对能量的高需求需要严格调控代谢途径以维持生理活动。葡萄糖作为主要的能量底物,会经历复杂的代谢转化,线粒体在通过氧化磷酸化产生三磷酸腺苷(ATP)的过程中发挥核心作用。这种代谢相互作用的失调与阿尔茨海默病(AD)有关,在AD中,葡萄糖代谢受损、氧化应激和线粒体功能障碍会促进疾病进展。本综述探讨了星形胶质细胞和神经元之间复杂的生物能量相互作用,强调了线粒体解偶联蛋白(UCPs),特别是UCP4,作为大脑代谢和神经元功能重要调节因子的作用。UCP4主要在大脑中表达,它会降低线粒体内膜的膜电位,从而可能减少活性氧的产生。此外,UCP4可减轻线粒体钙超载,并通过从线粒体呼吸到糖酵解的代谢转变维持细胞ATP水平。有趣的是,AD脑组织中神经元UCPs,即UCP2、4和5的水平显著降低,并且一种特定的UCP4变体与患AD风险增加有关。很少有调节星形胶质细胞或神经元中UCP4表达的研究强调了其对神经退行性变和衰老的保护作用,这表明旨在激活UCPs的药理学策略,如质子载体解偶联剂,有望用于AD和其他神经退行性疾病的治疗干预。尽管取得了重大进展,但我们对UCPs在大脑代谢中的理解仍处于早期阶段,这突出了进一步研究以阐明它们在大脑中的生物学功能及其治疗潜力的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验