Suppr超能文献

钙钛矿纳米薄膜中的应力诱导立方相向六方相转变

Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

机构信息

Shanghai University Materials Genome Institute and Shanghai Materials Genome Institute, Shanghai University , 99 Shangda Road, Shanghai 200444, China.

Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China.

出版信息

Nano Lett. 2017 Aug 9;17(8):5148-5155. doi: 10.1021/acs.nanolett.7b02570. Epub 2017 Jul 31.

Abstract

The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO) with a special thermomechanical treatment (TMT), where BaTiO nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

摘要

晶体结构与机械变形之间的强耦合作用可以将低对称性相从高对称性相中稳定下来,或者在氧化物薄膜中诱导新的相变。由于氧化物薄膜中的应力诱导结构相变对材料的功能有重大影响,因此引起了越来越多的关注。在这里,我们通过特殊的热机械处理(TMT)实验发现了钛酸钡(BaTiO)钙钛矿纳米薄膜中的一种新型应力诱导立方到六方相转变,其中 BaTiO 纳米薄膜在不同的应力下在 575°C 的温度下退火。高分辨率透射电子显微镜和拉曼光谱都表明,在较高的拉伸应下,钙钛矿薄膜中具有更高密度的六方相。X 射线光电子能谱和电子能量损失能谱都没有检测到 Ti 原子价态的任何变化,从而排除了氧空位诱导立方到六方(c-to-h)相变的机制。第一性原理计算表明,在高温下通过晶格剪切可以完成 c-to-h 相变,这与实验观察结果一致。外加弯曲和残余拉伸应力在纳米薄膜中产生剪切应力。升高温度时的热能有助于剪切应力克服 c-to-h 相变过程中的能垒。TMT 下钙钛矿纳米薄膜的应力诱导相变为材料科学家和工程师提供了一种新的方法来调整铁电材料的纳米/微观结构和性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验