Suppr超能文献

纳米片负载单原子双功能催化剂用于全水分解。

Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.

机构信息

School of Physics, Southeast University , Nanjing 211189, China.

Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska , Lincoln, Nebraska 68588, United States.

出版信息

Nano Lett. 2017 Aug 9;17(8):5133-5139. doi: 10.1021/acs.nanolett.7b02518. Epub 2017 Jul 31.

Abstract

Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β boron monolayer (Ni/β-BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni/β-BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.

摘要

纳米片负载的单原子催化剂(SACs)可以充分利用金属原子,同时具有高选择性和活性,而双功能催化剂比两个单独的单功能催化剂具有更高的性能和更低的成本。因此,负载的单原子双功能催化剂具有很大的经济利益和科学重要性。在这里,我们基于第一性原理计算,报道了首例单原子双功能电催化剂的设计,即负载在β-硼单层上的孤立镍原子(Ni/β-BM),以实现整体水分解。这种纳米片负载的 SAC 表现出显著的电催化性能,其析氧/析氢反应的计算过电位仅为 0.40/0.06 V。从头算分子动力学模拟表明,SAC 可以在 800 K 的高温下存活,同时施加 1.68 eV 的高能量势垒以防止孤立的 Ni 原子聚集。从计算机模拟中展示了合成 Ni/β-BM SAC 的可行实验途径。所期望的纳米片负载的单原子双功能催化剂不仅显示出实现整体水分解的巨大潜力,而且为推进清洁能源技术提供了具有成本效益的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验