Suppr超能文献

通过拓扑结构和推土机距离对显著注意力进行建模以预测眼睛方向。

Modelling saliency attention to predict eye direction by topological structure and earth mover's distance.

作者信息

Wei Longsheng, Peng Jian, Liu Wei, Wang Xinmei, Liu Feng

机构信息

School of Automation, China University of Geosciences, Wuhan, China.

Hubei key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan, China.

出版信息

PLoS One. 2017 Jul 26;12(7):e0181543. doi: 10.1371/journal.pone.0181543. eCollection 2017.

Abstract

A saliency attention model for predicting eye direction is proposed in this paper. This work is inspired by the success of the topological structure and Earth Mover's Distance (EMD) approach. Firstly, we extract visual saliency features such as color contrast, intensity contrast, orientation, and texture. Then, we eliminate disconnected regions in the feature maps to keep topological structure. Secondly, we calculate center surround difference using across-scale EMD between different scales feature maps, rather than utilizing the Difference of Gaussian (DoG), which is used in many other saliency attention models. Thirdly, we across-scale fuse the feature maps in different scale and same feature. Lastly, we take advantage of competition function to calculate feature maps in same feature to form a saliency map, which is use to predict eye direction. Experimental results demonstrated the proposed model outperformed the state-of-the-art schemes in eye direction prediction community.

摘要

本文提出了一种用于预测眼睛注视方向的显著注意力模型。这项工作受到拓扑结构和推土机距离(EMD)方法成功的启发。首先,我们提取视觉显著特征,如颜色对比度、强度对比度、方向和纹理。然后,我们消除特征图中的不连续区域以保持拓扑结构。其次,我们使用不同尺度特征图之间的跨尺度EMD计算中心环绕差异,而不是像许多其他显著注意力模型那样使用高斯差分(DoG)。第三,我们跨尺度融合不同尺度和相同特征的特征图。最后,我们利用竞争函数计算相同特征的特征图以形成显著图,该显著图用于预测眼睛注视方向。实验结果表明,所提出的模型在眼睛注视方向预测领域优于当前的先进方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb67/5528872/380d310d3994/pone.0181543.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验