Baranovskiy Andrey G, Gu Jianyou, Babayeva Nigar D, Kurinov Igor, Pavlov Youri I, Tahirov Tahir H
From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and.
the Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, Illinois 60439.
J Biol Chem. 2017 Sep 22;292(38):15717-15730. doi: 10.1074/jbc.M117.792705. Epub 2017 Jul 26.
The eukaryotic B-family DNA polymerases include four members: Polα, Polδ, Polϵ, and Polζ, which share common architectural features, such as the exonuclease/polymerase and C-terminal domains (CTDs) of catalytic subunits bound to indispensable B-subunits, which serve as scaffolds that mediate interactions with other components of the replication machinery. Crystal structures for the B-subunits of Polα and Polδ/Polζ have been reported: the former within the primosome and separately with CTD and the latter with the N-terminal domain of the C-subunit. Here we present the crystal structure of the human Polϵ B-subunit (p59) in complex with CTD of the catalytic subunit (p261). The structure revealed a well defined electron density for p261 and the phosphodiesterase and oligonucleotide/oligosaccharide-binding domains of p59. However, electron density was missing for the p59 N-terminal domain and for the linker connecting it to the phosphodiesterase domain. Similar to Polα, p261 of Polϵ contains a three-helix bundle in the middle and zinc-binding modules on each side. Intersubunit interactions involving 11 hydrogen bonds and numerous hydrophobic contacts account for stable complex formation with a buried surface area of 3094 Å Comparative structural analysis of p59-p261 with the corresponding Polα complex revealed significant differences between the B-subunits and CTDs, as well as their interaction interfaces. The B-subunit of Polδ/Polζ also substantially differs from B-subunits of either Polα or Polϵ. This work provides a structural basis to explain biochemical and genetic data on the importance of B-subunit integrity in replisome function .
真核生物B家族DNA聚合酶包括四个成员:Polα、Polδ、Polϵ和Polζ,它们具有共同的结构特征,例如催化亚基的核酸外切酶/聚合酶和C端结构域(CTD)与不可或缺的B亚基结合,B亚基作为支架介导与复制机制其他组分的相互作用。已报道了Polα和Polδ/Polζ的B亚基的晶体结构:前者在引发体中以及与CTD分开的结构,后者与C亚基的N端结构域的结构。本文展示了人Polϵ B亚基(p59)与催化亚基(p261)的CTD形成的复合物的晶体结构。该结构揭示了p261以及p59的磷酸二酯酶和寡核苷酸/寡糖结合结构域有明确的电子密度。然而,p59 N端结构域以及连接它与磷酸二酯酶结构域的接头的电子密度缺失。与Polα类似,Polϵ的p261在中间包含一个三螺旋束,两侧各有一个锌结合模块。涉及11个氢键和众多疏水接触的亚基间相互作用导致形成稳定的复合物,其埋藏表面积为3094 Å。对p59-p261与相应的Polα复合物进行比较结构分析,结果显示B亚基和CTD之间以及它们的相互作用界面存在显著差异。Polδ/Polζ的B亚基也与Polα或Polϵ的B亚基有很大不同。这项工作提供了一个结构基础,用以解释关于B亚基完整性在复制体功能中的重要性的生化和遗传数据。