US Army Research Laboratory, Aberdeen Proving Grounds, MD 21005, United States of America.
Nanotechnology. 2017 Oct 6;28(40):405304. doi: 10.1088/1361-6528/aa8271. Epub 2017 Jul 27.
Nanoscale engineering of noble metal particles has provided numerous material configurations to selectively confine and manipulate light across the electromagnetic spectrum. Transitioning these materials to a composite form while maintaining the desired resonance properties has proven challenging. In this work, the successful integration of plasmon-focusing gold nanostars (GNSs) into polymer nanocomposites (PNCs) is demonstrated. Tailored GNSs are produced with over a 90% yield and methods to control the branching structures are shown. A protective silica capping shell is employed on the nanomaterials to facilitate survivability in the high temperate/high shear processing parameters to create optically-tuned injection molded PNCs. The developed GNS PNCs possess dichroic scattering and absorption behavior, opening up potential applications in the fields of holographic imaging, optical filtering and photovoltaics.
纳米尺度的贵金属粒子工程为选择性限制和操纵电磁光谱范围内的光提供了许多材料结构。将这些材料转化为复合材料形式,同时保持所需的共振特性,这已被证明是具有挑战性的。在这项工作中,成功地将等离子体聚焦金纳米星(GNS)集成到聚合物纳米复合材料(PNC)中。以超过 90%的产率制备了定制的 GNS,并展示了控制分支结构的方法。在纳米材料上采用保护性二氧化硅帽壳,以提高在高温/高剪切加工参数下的生存能力,从而制造出光学可调注塑 PNC。所开发的 GNS PNC 具有二向色散射和吸收行为,为全息成像、光学滤波和光伏等领域的潜在应用开辟了道路。