Suppr超能文献

对未感染多重耐药菌的重症患者发生耐药菌感染的风险进行建模。

Modeling risk for developing drug resistant bacterial infections in an MDR-naive critically ill population.

作者信息

Sonti Rajiv, Conroy Megan E, Welt Elena M, Hu Yi, Luta George, Jamieson Daniel B

机构信息

Division of Pulmonary, Critical Care and Sleep Medicine, Medstar Georgetown University Hospital, Washington, DC, USA.

Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University, Washington, DC, USA.

出版信息

Ther Adv Infect Dis. 2017 Jul;4(4):95-103. doi: 10.1177/2049936117715403. Epub 2017 Jul 5.

Abstract

PURPOSE

To create a model predictive of an individual's risk of developing a multidrug-resistant (MDR) infection while in the intensive care unit (ICU).

METHODS

This is a case-control study in which 189 ICU patients diagnosed with their first infection with an MDR organism were compared on the basis of demographic, past medical and clinical variables to randomly selected ICU patients without such an infection, era-matched in a 2:1 ratio. A prediction tool was derived using multivariate logistic regression.

RESULTS

Five features remained predictive of developing an infection with a drug-resistant pathogen: hospitalization within a year [adjusted odds ratio (OR) 2.14], chronic hemodialysis (3.86), underlying oxygen-dependent pulmonary disease (1.86), endotracheal intubation within 24 h (2.46) and reason for ICU admission (respiratory failure 2.89, non-respiratory failure, non-shock presentation 1.85). Using a scoring system (0-7 points) based on the adjusted OR, risk categories were derived (low: 0-2 points, intermediate: 3-4 points and high risk: 5-7 points). The negative predictive value at a score cutoff of 2 is excellent (88.9%).

CONCLUSIONS

A clinical prediction rule comprised of five easily measured ICU variables reasonably discriminates between patients who will develop their first MDR infection versus those who will not.

摘要

目的

创建一个模型,用于预测个体在重症监护病房(ICU)发生多重耐药(MDR)感染的风险。

方法

这是一项病例对照研究,将189例首次被诊断为MDR病原体感染的ICU患者,根据人口统计学、既往病史和临床变量,与随机选择的未发生此类感染的ICU患者进行比较,按2:1的比例进行时代匹配。使用多变量逻辑回归得出一个预测工具。

结果

有五个特征仍然可预测发生耐药病原体感染:一年内住院(调整后的优势比[OR]为2.14)、慢性血液透析(3.86)、潜在的依赖氧的肺部疾病(1.86)、24小时内气管插管(2.46)以及ICU入院原因(呼吸衰竭为2.89,非呼吸衰竭、非休克表现为1.85)。基于调整后的OR使用评分系统(0 - 7分)得出风险类别(低:0 - 2分,中:3 - 4分,高风险:5 - 7分)。在分数截断值为2时的阴性预测值极佳(88.9%)。

结论

由五个易于测量的ICU变量组成的临床预测规则能够合理地区分将发生首次MDR感染的患者和不会发生感染的患者。

相似文献

1
Modeling risk for developing drug resistant bacterial infections in an MDR-naive critically ill population.
Ther Adv Infect Dis. 2017 Jul;4(4):95-103. doi: 10.1177/2049936117715403. Epub 2017 Jul 5.
4
Risk factors for multidrug-resistant Gram-negative infection in burn patients.
ANZ J Surg. 2018 May;88(5):480-485. doi: 10.1111/ans.14144. Epub 2017 Aug 29.
6
[The epidemiology of multidrug-resistant bacteria colonization and analysis of its risk factors in intensive care unit].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2015 Aug;27(8):667-71. doi: 10.3760/cma.j.issn.2095-4352.2015.08.010.
8
Infection with multidrug-resistant gram-negative bacteria in a pediatric oncology intensive care unit: risk factors and outcomes.
J Pediatr (Rio J). 2015 Sep-Oct;91(5):435-41. doi: 10.1016/j.jped.2014.11.009. Epub 2015 Jun 6.
10
Meticillin-resistant Staphylococcus aureus in the intensive care unit: its effect on outcome and risk factors for acquisition.
J Hosp Infect. 2015 Aug;90(4):327-32. doi: 10.1016/j.jhin.2015.04.009. Epub 2015 May 1.

引用本文的文献

本文引用的文献

1
A Randomized Trial of Long-Term Oxygen for COPD with Moderate Desaturation.
N Engl J Med. 2016 Oct 27;375(17):1617-1627. doi: 10.1056/NEJMoa1604344.
4
The impact of hospital-acquired infections with multidrug-resistant bacteria in an oncology intensive care unit.
Int J Infect Dis. 2015 Feb;31:31-4. doi: 10.1016/j.ijid.2014.12.022. Epub 2014 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验