IEEE Trans Image Process. 2017 Nov;26(11):5188-5202. doi: 10.1109/TIP.2017.2732239. Epub 2017 Jul 26.
Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.
图像着色旨在从给定的灰度图像中生成自然外观的彩色图像,这仍然是一个具有挑战性的问题。在本文中,我们提出了一种新的基于示例的图像着色方法,利用新的局部一致稀疏表示。给定一张单参考彩色图像,我们的方法通过稀疏追踪自动对目标灰度图像进行着色。为了提高效率和鲁棒性,我们的方法在超像素级别上进行操作。我们为每个超像素提取低水平强度特征、中水平纹理特征和高水平语义特征,然后将它们连接起来形成其描述符。从参考图像中所有超像素的特征向量集合构成字典。我们将目标超像素的着色表示为基于字典的稀疏重建问题。受观察到具有相似空间位置和/或特征表示的超像素很可能与来自参考图像的空间接近区域匹配的启发,我们进一步在能量公式中引入了一个局部促进正则化项,这大大提高了匹配一致性和随后的着色结果。目标超像素基于主参考超像素的色度信息进行着色。最后,为了在保持锐度的同时进一步提高一致性,我们在目标灰度图像的指导下为色度通道开发了一种新的保持边缘滤波器。据我们所知,这是从单参考图像进行稀疏追踪图像着色的首次工作。实验结果表明,我们的着色方法在视觉上和使用用户研究进行的定量评估方面都优于最先进的方法。