Suppr超能文献

颗石藻对自然低pH值深层海水突然暴露的生理反应。

Physiological responses of coccolithophores to abrupt exposure of naturally low pH deep seawater.

作者信息

Iglesias-Rodriguez Maria Debora, Jones Bethan M, Blanco-Ameijeiras Sonia, Greaves Mervyn, Huete-Ortega Maria, Lebrato Mario

机构信息

Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, United States of America.

Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom.

出版信息

PLoS One. 2017 Jul 27;12(7):e0181713. doi: 10.1371/journal.pone.0181713. eCollection 2017.

Abstract

Upwelling is the process by which deep, cold, relatively high-CO2, nutrient-rich seawater rises to the sunlit surface of the ocean. This seasonal process has fueled geoengineering initiatives to fertilize the surface ocean with deep seawater to enhance productivity and thus promote the drawdown of CO2. Coccolithophores, which inhabit many upwelling regions naturally 'fertilized' by deep seawater, have been investigated in the laboratory in the context of ocean acidification to determine the extent to which nutrients and CO2 impact their physiology, but few data exist in the field except from mesocosms. Here, we used the Porcupine Abyssal Plain (north Atlantic Ocean) Observatory to retrieve seawater from depths with elevated CO2 and nutrients, mimicking geoengineering approaches. We tested the effects of abrupt natural deep seawater fertilization on the physiology and biogeochemistry of two strains of Emiliania huxleyi of known physiology. None of the strains tested underwent cell divisions when incubated in waters obtained from <1,000 m (pH = 7.99-8.08; CO2 = 373-485 p.p.m; 1.5-12 μM nitrate). However, growth was promoted in both strains when cells were incubated in seawater from ~1,000 m (pH = 7.9; CO2 ~560 p.p.m.; 14-17 μM nitrate) and ~4,800 m (pH = 7.9; CO2 ~600 p.p.m.; 21 μM nitrate). Emiliania huxleyi strain CCMP 88E showed no differences in growth rate or in cellular content or production rates of particulate organic (POC) and inorganic (PIC) carbon and cellular particulate organic nitrogen (PON) between treatments using water from 1,000 m and 4,800 m. However, despite the N:P ratio of seawater being comparable in water from ~1,000 and ~4,800 m, the PON production rates were three times lower in one incubation using water from ~1,000 m compared to values observed in water from ~4,800 m. Thus, the POC:PON ratios were threefold higher in cells that were incubated in ~1,000 m seawater. The heavily calcified strain NZEH exhibited lower growth rates and PIC production rates when incubated in water from ~4,800 m compared to ~1,000 m, while cellular PIC, POC and PON were higher in water from 4,800 m. Calcite Sr/Ca ratios increased with depth despite constant seawater Sr/Ca, indicating that upwelling changes coccolith geochemistry. Our study provides the first experimental and field trial of a geoengineering approach to test how deep seawater impacts coccolithophore physiological and biogeochemical properties. Given that coccolithophore growth was only stimulated using waters obtained from >1,000 m, artificial upwelling using shallower waters may not be a suitable approach for promoting carbon sequestration for some locations and assemblages, and should therefore be investigated on a site-by-site basis.

摘要

上升流是深层、寒冷、相对高二氧化碳且营养丰富的海水上升至海洋阳光照射表面的过程。这一季节性过程推动了地球工程倡议,即利用深层海水为海洋表层施肥,以提高生产力,从而促进二氧化碳的吸收。球石藻自然栖息在许多由深层海水“施肥”的上升流区域,在实验室中已针对海洋酸化情况对其进行了研究,以确定营养物质和二氧化碳对其生理机能的影响程度,但除了中宇宙实验外,实地数据很少。在此,我们利用北大西洋豪猪深海平原观测站,从二氧化碳和营养物质含量升高的深度采集海水,模拟地球工程方法。我们测试了突然进行自然深层海水施肥对两种已知生理机能的赫氏颗石藻菌株的生理机能和生物地球化学的影响。在取自深度小于1000米(pH = 7.99 - 8.08;二氧化碳 = 373 - 485 ppm;硝酸盐1.5 - 12 μM)的海水中培养时,所测试的菌株均未进行细胞分裂。然而,当细胞在取自约1000米(pH = 7.9;二氧化碳约560 ppm;硝酸盐14 - 17 μM)和约4800米(pH = 7.9;二氧化碳约600 ppm;硝酸盐21 μM)的海水中培养时,两种菌株的生长均得到促进。赫氏颗石藻CCMP 88E菌株在使用取自1000米和4800米海水的处理之间,生长速率、颗粒有机碳(POC)和无机碳(PIC)的细胞含量或生产率以及细胞颗粒有机氮(PON)均无差异。然而,尽管取自约1000米和约4800米海水中的海水氮磷比相当,但在一次使用取自约1000米海水的培养中,PON生产率比在取自约4800米海水中观察到的值低三倍。因此,在约1000米海水中培养的细胞中,POC:PON比高三倍。与约1000米相比,高度钙化的NZEH菌株在取自约4800米海水中培养时生长速率和PIC生产率较低,而在取自4800米海水中细胞PIC、POC和PON较高。尽管海水锶钙比恒定,但方解石锶钙比随深度增加,表明上升流改变了球石藻地球化学。我们的研究首次对一种地球工程方法进行了实验和实地试验,以测试深层海水如何影响球石藻的生理和生物地球化学特性。鉴于仅使用取自深度大于1000米的海水才能刺激球石藻生长,对于某些地点和群落而言,使用较浅海水进行人工上升流可能不是促进碳固存的合适方法,因此应逐案进行研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b5/5531516/e60b01ef8e26/pone.0181713.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验