Suppr超能文献

综合计算方法评估双相情感障碍的遗传标志物。

An Integrative Computational Approach to Evaluate Genetic Markers for Bipolar Disorder.

机构信息

Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, 030000, China.

Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu Province, 214151, China.

出版信息

Sci Rep. 2017 Jul 27;7(1):6745. doi: 10.1038/s41598-017-05846-4.

Abstract

Studies to date have reported hundreds of genes connected to bipolar disorder (BP). However, many studies identifying candidate genes have lacked replication, and their results have, at times, been inconsistent with one another. This paper, therefore, offers a computational workflow that can curate and evaluate BP-related genetic data. Our method integrated large-scale literature data and gene expression data that were acquired from both postmortem human brain regions (BP case/control: 45/50) and peripheral blood mononuclear cells (BP case/control: 193/593). To assess the pathogenic profiles of candidate genes, we conducted Pathway Enrichment, Sub-Network Enrichment, and Gene-Gene Interaction analyses, with 4 metrics proposed and validated for each gene. Our approach developed a scalable BP genetic database (BP_GD), including BP related genes, drugs, pathways, diseases and supporting references. The 4 metrics successfully identified frequently-studied BP genes (e.g. GRIN2A, DRD1, DRD2, HTR2A, CACNA1C, TH, BDNF, SLC6A3, P2RX7, DRD3, and DRD4) and also highlighted several recently reported BP genes (e.g. GRIK5, GRM1 and CACNA1A). The computational biology approach and the BP database developed in this study could contribute to a better understanding of the current stage of BP genetic research and assist further studies in the field.

摘要

迄今为止的研究报告了数百个与双相情感障碍 (BP) 相关的基因。然而,许多确定候选基因的研究缺乏复制,并且它们的结果有时彼此不一致。因此,本文提供了一种可以管理和评估与 BP 相关的遗传数据的计算工作流程。我们的方法整合了大规模的文献数据和从死后人类大脑区域 (BP 病例/对照:45/50) 和外周血单核细胞 (BP 病例/对照:193/593) 获得的基因表达数据。为了评估候选基因的致病谱,我们进行了途径富集、子网富集和基因-基因相互作用分析,并为每个基因提出并验证了 4 个指标。我们的方法开发了一个可扩展的 BP 遗传数据库 (BP_GD),包括与 BP 相关的基因、药物、途径、疾病和支持参考文献。这 4 个指标成功地识别了经常研究的 BP 基因(例如 GRIN2A、DRD1、DRD2、HTR2A、CACNA1C、TH、BDNF、SLC6A3、P2RX7、DRD3 和 DRD4),并强调了几个最近报道的 BP 基因(例如 GRIK5、GRM1 和 CACNA1A)。本研究中开发的计算生物学方法和 BP 数据库有助于更好地了解 BP 遗传研究的当前阶段,并协助该领域的进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5adb/5532256/2a19435e414f/41598_2017_5846_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验