Gouda Alaa S, Amine Mahasen S, Pedersen Erik B
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
Org Biomol Chem. 2017 Aug 9;15(31):6613-6621. doi: 10.1039/c7ob01393k.
In order to gain insight into how to improve thermal stability of i-motifs when used in the context of biomedical and nanotechnological applications, novel anthraquinone-modified i-motifs were synthesized by insertion of 1,8-, 1,4-, 1,5- and 2,6-disubstituted anthraquinone monomers into the TAA loops of a 22mer cytosine-rich human telomeric DNA sequence. The influence of the four anthraquinone linkers on the i-motif thermal stability was investigated at 295 nm and pH 5.5. Anthraquinone monomers modulate the i-motif stability in a position-depending manner and the modulation also depends on the substitution pattern of the anthraquinone. The insertion of anthraquinone was found to stabilize the i-motif structure when replacing any one of the positions of the central TAA loop and the thermal stabilities were typically higher than those previously found for i-motifs containing pyrene-modified uracilyl unlocked nucleic acid monomers or twisted intercalating nucleic acid. The 2,6-disubstituted anthraquinone linker replacing T enabled a significant increase of i-motif thermal melting by 8.2 °C. A substantial increase of 5.0 °C in i-motif thermal melting was recorded when both A and T were modified with a double replacement by the 2,6-isomer into the TAA loops in the outer regions. The largest destabilization is observed for the 1,5-disubstituted anthraquinone linker upon the replacement of A. CD curves of anthraquinone-modified variants imply no structural changes in all cases under potassium buffer conditions compared with those of the native i-motif. Molecular modeling studies explained the increased thermal stabilities of anthraquinone-modified i-motifs.
为深入了解在生物医学和纳米技术应用背景下如何提高i-基序的热稳定性,通过将1,8-、1,4-、1,5-和2,6-二取代蒽醌单体插入富含胞嘧啶的22聚体人端粒DNA序列的TAA环中,合成了新型蒽醌修饰的i-基序。在295 nm和pH 5.5条件下研究了四种蒽醌连接体对i-基序热稳定性的影响。蒽醌单体以位置依赖的方式调节i-基序的稳定性,这种调节还取决于蒽醌的取代模式。当取代中央TAA环的任何一个位置时,发现插入蒽醌可稳定i-基序结构,其热稳定性通常高于先前含有芘修饰的尿嘧啶解锁核酸单体或扭曲插入核酸的i-基序。用2,6-二取代蒽醌连接体取代T可使i-基序的热解链显著增加8.2℃。当A和T都被2,6-异构体双取代到外部区域的TAA环中时,i-基序的热解链记录到显著增加5.0℃。在取代A时,观察到1,5-二取代蒽醌连接体的去稳定作用最大。与天然i-基序相比,蒽醌修饰变体的圆二色曲线表明在钾缓冲液条件下所有情况下均无结构变化。分子模拟研究解释了蒽醌修饰的i-基序热稳定性增加的原因。