Suppr超能文献

蚱蜢和果蝇中构建扇形体的保守方案。

A conserved plan for wiring up the fan-shaped body in the grasshopper and Drosophila.

作者信息

Boyan George, Liu Yu, Khalsa Sat Kartar, Hartenstein Volker

机构信息

Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany.

Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China.

出版信息

Dev Genes Evol. 2017 Jul;227(4):253-269. doi: 10.1007/s00427-017-0587-2. Epub 2017 Jul 27.

Abstract

The central complex comprises an elaborate system of modular neuropils which mediate spatial orientation and sensory-motor integration in insects such as the grasshopper and Drosophila. The neuroarchitecture of the largest of these modules, the fan-shaped body, is characterized by its stereotypic set of decussating fiber bundles. These are generated during development by axons from four homologous protocerebral lineages which enter the commissural system and subsequently decussate at stereotypic locations across the brain midline. Since the commissural organization prior to fan-shaped body formation has not been previously analyzed in either species, it was not clear how the decussating bundles relate to individual lineages, or if the projection pattern is conserved across species. In this study, we trace the axonal projections from the homologous central complex lineages into the commissural system of the embryonic and larval brains of both the grasshopper and Drosophila. Projections into the primordial commissures of both species are found to be lineage-specific and allow putatively equivalent fascicles to be identified. Comparison of the projection pattern before and after the commencement of axon decussation in both species reveals that equivalent commissural fascicles are involved in generating the columnar neuroarchitecture of the fan-shaped body. Further, the tract-specific columns in both the grasshopper and Drosophila can be shown to contain axons from identical combinations of central complex lineages, suggesting that this columnar neuroarchitecture is also conserved.

摘要

中央复合体由一个精细的模块化神经纤维网系统组成,该系统在蚱蜢和果蝇等昆虫中介导空间定向和感觉运动整合。这些模块中最大的扇形体的神经结构,其特征在于其一组刻板的交叉纤维束。这些纤维束在发育过程中由来自四个同源原脑谱系的轴突产生,这些轴突进入连合系统,随后在大脑中线的刻板位置交叉。由于之前尚未在这两个物种中分析扇形体形成之前的连合组织,因此尚不清楚交叉束与各个谱系的关系,也不清楚投射模式在物种间是否保守。在这项研究中,我们追踪了同源中央复合体谱系的轴突投射到蚱蜢和果蝇胚胎及幼虫大脑的连合系统中。发现这两个物种向原始连合的投射是谱系特异性的,并允许识别假定等效的纤维束。比较这两个物种轴突交叉开始前后的投射模式,发现等效的连合纤维束参与了扇形体柱状神经结构的形成。此外,蚱蜢和果蝇中特定束的柱都可以显示包含来自中央复合体谱系相同组合的轴突,这表明这种柱状神经结构也是保守的。

相似文献

1
A conserved plan for wiring up the fan-shaped body in the grasshopper and Drosophila.
Dev Genes Evol. 2017 Jul;227(4):253-269. doi: 10.1007/s00427-017-0587-2. Epub 2017 Jul 27.
4
Development of the Neurochemical Architecture of the Central Complex.
Front Behav Neurosci. 2016 Aug 31;10:167. doi: 10.3389/fnbeh.2016.00167. eCollection 2016.
5
Embryonic development of the insect central complex: insights from lineages in the grasshopper and Drosophila.
Arthropod Struct Dev. 2011 Jul;40(4):334-48. doi: 10.1016/j.asd.2011.02.005. Epub 2011 Mar 5.
6
Sequence analysis and neuronal expression of fasciclin I in grasshopper and Drosophila.
Cell. 1988 May 20;53(4):577-87. doi: 10.1016/0092-8674(88)90574-0.
8
Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain.
Dev Biol. 2015 Oct 1;406(1):14-39. doi: 10.1016/j.ydbio.2015.06.021. Epub 2015 Jun 30.

引用本文的文献

2
Stem cell-specific ecdysone signaling regulates the development of dorsal fan-shaped body neurons and sleep homeostasis.
Curr Biol. 2024 Nov 4;34(21):4951-4967.e5. doi: 10.1016/j.cub.2024.09.020. Epub 2024 Oct 8.
4
5
Stem cell-specific ecdysone signaling regulates the development and function of a sleep homeostat.
bioRxiv. 2023 Oct 2:2023.09.29.560022. doi: 10.1101/2023.09.29.560022.
6
The RNA-binding protein, Imp specifies olfactory navigation circuitry and behavior in .
bioRxiv. 2023 May 29:2023.05.26.542522. doi: 10.1101/2023.05.26.542522.
7
Early embryonic development of Johnston's organ in the antenna of the desert locust Schistocerca gregaria.
Dev Genes Evol. 2022 Dec;232(5-6):103-113. doi: 10.1007/s00427-022-00695-2. Epub 2022 Sep 23.
8
A projectome of the bumblebee central complex.
Elife. 2021 Sep 15;10:e68911. doi: 10.7554/eLife.68911.
10
Sequence heterochrony led to a gain of functionality in an immature stage of the central complex: A fly-beetle insight.
PLoS Biol. 2020 Oct 26;18(10):e3000881. doi: 10.1371/journal.pbio.3000881. eCollection 2020 Oct.

本文引用的文献

1
Development of the anterior visual input pathway to the Drosophila central complex.
J Comp Neurol. 2017 Nov 1;525(16):3458-3475. doi: 10.1002/cne.24277. Epub 2017 Aug 21.
2
Embryonic development of the pars intercerebralis/central complex of the grasshopper.
Dev Genes Evol. 1997 Nov;207(5):317-329. doi: 10.1007/s004270050119.
3
Development of the Neurochemical Architecture of the Central Complex.
Front Behav Neurosci. 2016 Aug 31;10:167. doi: 10.3389/fnbeh.2016.00167. eCollection 2016.
4
The insect central complex as model for heterochronic brain development-background, concepts, and tools.
Dev Genes Evol. 2016 Jun;226(3):209-19. doi: 10.1007/s00427-016-0542-7. Epub 2016 Apr 7.
5
Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain.
Dev Biol. 2015 Oct 1;406(1):14-39. doi: 10.1016/j.ydbio.2015.06.021. Epub 2015 Jun 30.
7
Conserved patterns of axogenesis in the panarthropod brain.
Arthropod Struct Dev. 2015 Mar;44(2):101-12. doi: 10.1016/j.asd.2014.11.003. Epub 2014 Dec 4.
9
Differential adhesion determines the organization of synaptic fascicles in the Drosophila visual system.
Curr Biol. 2014 Jun 16;24(12):1304-1313. doi: 10.1016/j.cub.2014.04.047. Epub 2014 May 29.
10
A systematic nomenclature for the insect brain.
Neuron. 2014 Feb 19;81(4):755-65. doi: 10.1016/j.neuron.2013.12.017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验