Stenhammar Joakim, Nardini Cesare, Nash Rupert W, Marenduzzo Davide, Morozov Alexander
Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden.
DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom.
Phys Rev Lett. 2017 Jul 14;119(2):028005. doi: 10.1103/PhysRevLett.119.028005. Epub 2017 Jul 13.
In this Letter, we study the collective behavior of a large number of self-propelled microswimmers immersed in a fluid. Using unprecedentedly large-scale lattice Boltzmann simulations, we reproduce the transition to bacterial turbulence. We show that, even well below the transition, swimmers move in a correlated fashion that cannot be described by a mean-field approach. We develop a novel kinetic theory that captures these correlations and is nonperturbative in the swimmer density. To provide an experimentally accessible measure of correlations, we calculate the diffusivity of passive tracers and reveal its nontrivial density dependence. The theory is in quantitative agreement with the lattice Boltzmann simulations and captures the asymmetry between pusher and puller swimmers below the transition to turbulence.
在本信函中,我们研究了大量浸没在流体中的自驱动微型游动器的集体行为。通过前所未有的大规模格子玻尔兹曼模拟,我们再现了向细菌湍流的转变。我们表明,即使远低于转变点,游动器也以一种相关的方式移动,这种方式无法用平均场方法来描述。我们发展了一种新颖的动力学理论,该理论捕捉了这些相关性,并且在游动器密度方面是非微扰的。为了提供一种实验上可测量的相关性度量,我们计算了被动示踪剂的扩散率,并揭示了其非平凡的密度依赖性。该理论与格子玻尔兹曼模拟在定量上一致,并捕捉到了在向湍流转变以下推式和拉式游动器之间的不对称性。