文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定义癌症依赖图谱。

Defining a Cancer Dependency Map.

作者信息

Tsherniak Aviad, Vazquez Francisca, Montgomery Phil G, Weir Barbara A, Kryukov Gregory, Cowley Glenn S, Gill Stanley, Harrington William F, Pantel Sasha, Krill-Burger John M, Meyers Robin M, Ali Levi, Goodale Amy, Lee Yenarae, Jiang Guozhi, Hsiao Jessica, Gerath William F J, Howell Sara, Merkel Erin, Ghandi Mahmoud, Garraway Levi A, Root David E, Golub Todd R, Boehm Jesse S, Hahn William C

机构信息

Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, USA.

Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, USA; Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA.

出版信息

Cell. 2017 Jul 27;170(3):564-576.e16. doi: 10.1016/j.cell.2017.06.010.


DOI:10.1016/j.cell.2017.06.010
PMID:28753430
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5667678/
Abstract

Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean. We found predictive models for 426 dependencies (55%) by nonlinear regression modeling considering 66,646 molecular features. Many dependencies fall into a limited number of classes, and unexpectedly, in 82% of models, the top biomarkers were expression based. We demonstrated the basis behind one such predictive model linking hypermethylation of the UBB ubiquitin gene to a dependency on UBC. Together, these observations provide a foundation for a cancer dependency map that facilitates the prioritization of therapeutic targets.

摘要

大多数人类上皮肿瘤存在大量改变,这使得难以预测哪些基因是肿瘤存活所必需的。为了系统地识别癌症依赖性,我们分析了在多种人类癌细胞系中进行的501个全基因组功能丧失筛选。我们开发了DEMETER,这是一个分析框架,可区分RNAi的脱靶效应和靶向效应。在这些细胞系的子集中,有769个基因在与平均值相差六个标准差的阈值下表现出差异需求。通过考虑66,646个分子特征的非线性回归建模,我们找到了426种依赖性(55%)的预测模型。许多依赖性可归为有限的几类,而且出乎意料的是,在82%的模型中,顶级生物标志物是基于表达的。我们展示了一个这样的预测模型背后的基础,该模型将泛素基因UBB的高甲基化与对泛素结合酶UBC的依赖性联系起来。这些观察结果共同为癌症依赖性图谱奠定了基础,有助于确定治疗靶点的优先级。

相似文献

[1]
Defining a Cancer Dependency Map.

Cell. 2017-7-27

[2]
Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells.

Genome Med. 2017-6-1

[3]
Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration.

Nat Commun. 2018-11-2

[4]
Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal.

Genome Biol. 2023-8-23

[5]
Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening.

Cell. 2017-7-27

[6]
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Sci Data. 2014-9-30

[7]
A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization.

Cancer Cell. 2024-2-12

[8]
Inferring cancer dependencies on metabolic genes from large-scale genetic screens.

BMC Biol. 2019-4-30

[9]
Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability.

Elife. 2017-2-8

[10]
[Down-regulation of ubiquitin using short hairpin RNA inhibits the proliferation and promotes apoptosis of lung cancer H1299 cells].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2014-12

引用本文的文献

[1]
Neural interaction explainable AI predicts drug response across cancers.

NAR Cancer. 2025-9-3

[2]
Effect of Ipomoeassin F on the Synthesis of Membrane and Secretory Proteins in Triple-Negative Breast Cancer Cells.

ACS Omega. 2025-8-19

[3]
Targeting FSP1 to induce ferroptosis in chromophobe renal cell carcinoma.

Oncogene. 2025-9-6

[4]
Phenotypic screening converges on CDK9 inhibition as a therapeutic strategy in translocation renal cell carcinoma.

bioRxiv. 2025-8-30

[5]
Spatial colocalization and molecular crosstalk of myofibroblastic CAFs and tumor cells shape lymph node metastasis in oral squamous cell carcinoma.

PLoS Genet. 2025-9-4

[6]
Targeting mitochondrial proteases CLPP and LONP1 via disruption of mitochondrial redox homeostasis induces proteotoxic stress and suppresses tumor progression.

Cell Commun Signal. 2025-9-3

[7]
Genetic suppression features ABHD18 as a Barth syndrome therapeutic target.

Nature. 2025-9-3

[8]
Genome-wide CRISPR screen identifies Menin and SUZ12 as regulators of human developmental timing.

Nat Cell Biol. 2025-9-2

[9]
CRISPR-Cas13d-Mediated Targeting of a Context-Specific Essential Gene Enables Selective Elimination of Uveal Melanoma.

bioRxiv. 2025-8-21

[10]
Gene and pathway analysis of genome-wide genetic associations of bladder cancer.

Curr Urol. 2025-9

本文引用的文献

[1]
Genetic and Proteomic Interrogation of Lower Confidence Candidate Genes Reveals Signaling Networks in β-Catenin-Active Cancers.

Cell Syst. 2016-9-28

[2]
The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses.

Curr Protoc Bioinformatics. 2016-6-20

[3]
CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions.

Cancer Discov. 2016-6-3

[4]
Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting.

Cancer Discov. 2016-8

[5]
Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance.

Cell. 2016-1-14

[6]
PANTHER version 10: expanded protein families and functions, and analysis tools.

Nucleic Acids Res. 2016-1-4

[7]
DGIdb 2.0: mining clinically relevant drug-gene interactions.

Nucleic Acids Res. 2016-1-4

[8]
Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.

Cancer Discov. 2015-11

[9]
Identification and characterization of essential genes in the human genome.

Science. 2015-11-27

[10]
The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands.

Nucleic Acids Res. 2016-1-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索