Suppr超能文献

神经交互可解释人工智能预测多种癌症的药物反应。

Neural interaction explainable AI predicts drug response across cancers.

作者信息

Keyl Philipp, Keyl Julius, Mock Andreas, Dernbach Gabriel, Mochmann Liliana H, Kiermeyer Niklas, Jurmeister Philipp, Bockmayr Michael, Schwarz Roland F, Montavon Grégoire, Müller Klaus-Robert, Klauschen Frederick

机构信息

Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.

Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany.

出版信息

NAR Cancer. 2025 Sep 3;7(3):zcaf029. doi: 10.1093/narcan/zcaf029. eCollection 2025 Sep.

Abstract

Personalized treatment selection is crucial for cancer patients due to the high variability in drug response. While actionable mutations can increasingly inform treatment decisions, most therapies still rely on population-based approaches. Here, we introduce neural interaction explainable AI (NeurixAI), an explainable and highly scalable deep learning framework that models drug-gene interactions and identifies transcriptomic patterns linked with drug response. Trained on data from 546 646 drug perturbation experiments involving 1135 drugs and molecular profiles from 476 tumors, NeurixAI accurately predicted treatment responses for 272 targeted and 30 chemotherapeutic drugs in unseen tumor samples (Spearman's rho >0.2), maintaining high performance on an external validation set. Additionally, NeurixAI identified the anticancer potential of 160 repurposed non-cancer drugs. Using explainable artificial intelligence (xAI), our framework uncovered key genes influencing drug response at the individual tumor level and revealed both known and novel mechanisms of drug resistance. These findings demonstrate the potential of integrating transcriptomics with xAI to optimize cancer treatment, enable drug repurposing, and identify new therapeutic targets.

摘要

由于药物反应存在高度变异性,个性化治疗选择对癌症患者至关重要。虽然可操作的突变越来越有助于指导治疗决策,但大多数治疗方法仍依赖基于群体的方法。在此,我们介绍神经交互可解释人工智能(NeurixAI),这是一个可解释且具有高度可扩展性的深度学习框架,它对药物-基因相互作用进行建模,并识别与药物反应相关的转录组模式。NeurixAI基于来自546646个药物扰动实验的数据进行训练,这些实验涉及1135种药物以及来自476个肿瘤的分子图谱,它准确预测了在未见过的肿瘤样本中272种靶向药物和30种化疗药物的治疗反应(斯皮尔曼等级相关系数>0.2),并在外部验证集上保持了高性能。此外,NeurixAI还确定了160种重新利用的非癌症药物的抗癌潜力。通过使用可解释人工智能(xAI),我们的框架在个体肿瘤水平上发现了影响药物反应的关键基因,并揭示了已知和新的耐药机制。这些发现证明了将转录组学与xAI相结合以优化癌症治疗、实现药物重新利用和识别新治疗靶点的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验