Suppr超能文献

四元数域中具有异步时滞的递归神经网络稳定性的分解方法。

Decomposition approach to the stability of recurrent neural networks with asynchronous time delays in quaternion field.

机构信息

College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, China.

Department of Mathematics, Faculty of Science and Technology, University of Macau, Macau, China.

出版信息

Neural Netw. 2017 Oct;94:55-66. doi: 10.1016/j.neunet.2017.06.014. Epub 2017 Jul 8.

Abstract

In this paper, the global exponential stability for recurrent neural networks (QVNNs) with asynchronous time delays is investigated in quaternion field. Due to the non-commutativity of quaternion multiplication resulting from Hamilton rules: ij=-ji=k, jk=-kj=i, ki=-ik=j, ijk=i=j=k=-1, the QVNN is decomposed into four real-valued systems, which are studied separately. The exponential convergence is proved directly accompanied with the existence and uniqueness of the equilibrium point to the consider systems. Combining with the generalized ∞-norm and Cauchy convergence property in the quaternion field, some sufficient conditions to guarantee the stability are established without using any Lyapunov-Krasovskii functional and linear matrix inequality. Finally, a numerical example is given to demonstrate the effectiveness of the results.

摘要

本文在四元数域中研究了具有异步时滞的递归神经网络(QVNN)的全局指数稳定性。由于四元数乘法的不可交换性,根据哈密尔顿法则:ij=-ji=k,jk=-kj=i,ki=-ik=j,ijk=i=j=k=-1,QVNN 被分解为四个实值系统,分别进行研究。通过直接证明指数收敛,并证明所考虑系统平衡点的存在唯一性,得到了收敛结果。结合四元数域中的广义 ∞-范数和柯西收敛性质,建立了一些无需使用任何 Lyapunov-Krasovskii 函数和线性矩阵不等式的稳定性充分条件。最后,通过一个数值例子验证了所得结果的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验