Suppr超能文献

运用动态α因子进行氧传递建模。

Modelling oxygen transfer using dynamic alpha factors.

机构信息

College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China.

Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA, 92697-2175, USA.

出版信息

Water Res. 2017 Nov 1;124:139-148. doi: 10.1016/j.watres.2017.07.032. Epub 2017 Jul 17.

Abstract

Due to the importance of wastewater aeration in meeting treatment requirements and due to its elevated energy intensity, it is important to describe the real nature of an aeration system to improve design and specification, performance prediction, energy consumption, and process sustainability. Because organic loadings drive aeration efficiency to its lowest value when the oxygen demand (energy) is the highest, the implications of considering their dynamic nature on energy costs are of utmost importance. A dynamic model aimed at identifying conservation opportunities is presented. The model developed describes the correlation between the COD concentration and the α factor in activated sludge. Using the proposed model, the aeration efficiency is calculated as a function of the organic loading (i.e. COD). This results in predictions of oxygen transfer values that are more realistic than the traditional method of assuming constant α values. The model was applied to two water resource recovery facilities, and was calibrated and validated with time-sensitive databases. Our improved aeration model structure increases the quality of prediction of field data through the recognition of the dynamic nature of the alpha factor (α) as a function of the applied oxygen demand. For the cases presented herein, the model prediction of airflow improved by 20-35% when dynamic α is used. The proposed model offers a quantitative tool for the prediction of energy demand and for minimizing aeration design uncertainty.

摘要

由于废水曝气在满足处理要求方面的重要性,以及其能源强度较高,因此描述曝气系统的实际性质对于改进设计和规范、性能预测、能源消耗和工艺可持续性非常重要。由于有机负荷在需氧量(能量)最高时将曝气效率降低到最低值,因此考虑其动态特性对能源成本的影响至关重要。本文提出了一种旨在确定节能机会的动态模型。所开发的模型描述了活性污泥中 COD 浓度和α因子之间的相关性。使用所提出的模型,将曝气效率作为有机负荷(即 COD)的函数进行计算。这导致了比传统方法假设恒定α值更真实的氧气转移值预测。该模型应用于两个水资源回收设施,并使用时间敏感的数据库进行了校准和验证。通过识别α因子(α)作为应用需氧量的函数的动态特性,我们改进的曝气模型结构提高了现场数据预测的质量。对于本文提出的案例,使用动态α时,气流的模型预测提高了 20-35%。该模型提供了一种预测能源需求和最小化曝气设计不确定性的定量工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验