Suppr超能文献

心脏连接蛋白中的分子内信号:细胞质结构域二聚化的作用。

Intramolecular signaling in a cardiac connexin: Role of cytoplasmic domain dimerization.

机构信息

Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.

Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.

出版信息

J Mol Cell Cardiol. 2017 Oct;111:69-80. doi: 10.1016/j.yjmcc.2017.07.010. Epub 2017 Jul 25.

Abstract

Gap junctions, composed of connexins, mediate electrical coupling and impulse propagation in the working myocardium. In the human heart, the spatio-temporal regulation and distinct functional properties of the three dominant connexins (Cx43, Cx45, and Cx40) suggests non-redundant physiological roles for each isoform. There are substantial differences in gating properties, expression, and trafficking among these isoforms, however, little is known about the determinants of these different phenotypes. To gain insight regarding these determinants, we focused on the carboxyl-terminal (CT) domain because of its importance in channel regulation and large degree of sequence divergence among connexin family members. Using in vitro biophysical experiments, we identified a structural feature unique to Cx45: high affinity (K~100nM) dimerization between CT domains. In this study, we sought to determine if this dimerization occurs in cells and to identify the biological significance of the dimerization. Using a bimolecular fluorescence complementation assay, we demonstrate that the CT domains dimerize at the plasma membrane. By inhibiting CT dimerization with a mutant construct, we show that CT dimerization is necessary for proper Cx45 membrane localization, turnover, phosphorylation status, and binding to protein partners. Furthermore, CT dimerization is needed for normal intercellular communication and hemichannel activity. Altogether, our results demonstrate that CT dimerization is a structural feature important for correct Cx45 function. This study is significant because discovery of how interactions mediated by the CT domains can be modulated would open the door to strategies to ameliorate the pathological effects of altered connexin regulation in the failing heart.

摘要

缝隙连接由连接蛋白组成,介导工作心肌的电耦联和冲动传播。在人心肌中,三种主要连接蛋白(Cx43、Cx45 和 Cx40)的时空调节和独特的功能特性表明每个同工型具有非冗余的生理作用。这些同工型之间在门控特性、表达和运输方面存在很大差异,但对这些不同表型的决定因素知之甚少。为了深入了解这些决定因素,我们专注于羧基末端(CT)结构域,因为它在通道调节和连接蛋白家族成员之间的序列高度差异中具有重要作用。通过体外生物物理实验,我们确定了 Cx45 独特的结构特征:CT 结构域之间的高亲和力(K~100nM)二聚化。在这项研究中,我们试图确定这种二聚化是否发生在细胞中,并确定二聚化的生物学意义。通过使用双分子荧光互补测定法,我们证明 CT 结构域在质膜上发生二聚化。通过用突变构建体抑制 CT 二聚化,我们表明 CT 二聚化对于 Cx45 的膜定位、周转、磷酸化状态和与蛋白伴侣的结合是必需的。此外,CT 二聚化对于正常的细胞间通讯和半通道活性是必需的。总之,我们的结果表明 CT 二聚化是正确的 Cx45 功能的结构特征。这项研究意义重大,因为发现 CT 结构域介导的相互作用如何被调节将为改善连接蛋白调节改变在衰竭心脏中的病理影响的策略开辟道路。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验