El-Fiqi Ahmed, Buitrago Jennifer O, Yang Sung Hee, Kim Hae-Won
Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Glass Research Department, National Research Center, Cairo 12622, Egypt.
Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
Acta Biomater. 2017 Sep 15;60:38-49. doi: 10.1016/j.actbio.2017.07.036. Epub 2017 Jul 25.
Here we communicate the generation of biomimetically grown apatite spheres from aggregated bioglass nanoparticles and the potential properties applicable for drug delivery and cell/tissue engineering. Ion releasing nanoparticulates of bioglass (85%SiO-15%CaO) in a mineralizing medium show an intriguing dynamic phenomenon - aggregation, mineralization to apatite, integration and growth into micron-sized (1.5-3μm) spheres. During the progressive ionic dissolution/precipitation reactions, nano-to-micro-morphology, glass-to-crystal composition, and the physico-chemical properties (porosity, surface area, and charge) change dynamically. With increasing reaction period, the apatite becomes more crystallized with increased crystallinity and crystal size, and gets a composition closer to the stoichiometry. The developed microspheres exhibit hierarchical surface nanostructure, negative charge (ς-potential of -20mV), and ultrahigh mesoporosity (mesopore size of 6.1nm, and the resultant surface area of 63.7m/g and pore volume of 0.153cm/g) at 14days of mineralization, which are even higher than those of its precursor bioglass nanoparticles. Thanks to these properties, the biomimetic mineral microspheres take up biological molecules effectively, i.e., loading capacity of positive-charged protein is over 10%. Of note, the release is highly sustainable at a constant rate, i.e., profiling almost 'zero-order' kinetics for 4weeks, suggesting the potential usefulness as protein delivery systems. The biomimetic mineral microspheres hold some remnant Si in the core region, and release calcium, phosphate, and silicate ions over the test period, implying the long-term ionic-related therapeutic functions. The mesenchymal stem cells favour the biomimetic spheres with an excellent viability. Due to the merit of sizes (a few micrometers), the spheres can be intercalated into cells, mediating cellular interactions in 3D cell-spheroid engineering, and also can stimulate osteogenic differentiation of cells when incorporated into cell-laden gels. The intriguing properties observed in this study, including biomimetic composition, high mesoporosity, release of therapeutic ions, effective loading and long-term release of proteins, and diverse yet favorable 3D cellular interactions, suggest great potential of the newly developed biomimetic microspheres in biomedical applications, such as drug delivery and cell/tissue engineering.
This work reports the generation of apatite spheres with a few micrometers in size biomimetically grown from bioactive glass nanoparticles, through a series of intriguing yet unprecedented phenomenon involving aggregation of nanoparticles, mineralization and sphere growth. The mineral microspheres possess some unique physico-chemical properties including mesoporosity, ultrahigh surface area, and therapeutic ionic release. Furthermore, the spheres show excellent loading and delivery capacity of protein molecules, and mediate favorable cellular interactions in 2D and 3D culture conditions, demonstrating a future multifunctional microcarrier platform for the therapeutics delivery and cell/tissue engineering.
在此,我们报道了由聚集的生物玻璃纳米颗粒仿生生长出磷灰石球体,以及这些球体在药物递送和细胞/组织工程方面的潜在应用特性。生物玻璃(85%SiO₂ - 15%CaO)的离子释放纳米颗粒在矿化介质中呈现出一种有趣的动态现象——聚集、矿化形成磷灰石、整合并生长为微米级(1.5 - 3μm)的球体。在渐进的离子溶解/沉淀反应过程中,纳米到微米级的形态、玻璃到晶体的组成以及物理化学性质(孔隙率、表面积和电荷)都会动态变化。随着反应时间的增加,磷灰石的结晶度和晶体尺寸增加,结晶程度更高,且组成更接近化学计量比。所制备的微球在矿化14天时呈现出分级表面纳米结构、负电荷(ζ电位为 - 20mV)和超高介孔率(介孔尺寸为6.1nm,表面积为63.7m²/g,孔体积为0.153cm³/g),甚至高于其前体生物玻璃纳米颗粒。得益于这些特性,仿生矿化微球能够有效地摄取生物分子,即带正电荷蛋白质的负载量超过10%。值得注意的是,释放高度可持续且速率恒定,即呈现近“零级”动力学特征达4周,表明其作为蛋白质递送系统具有潜在应用价值。仿生矿化微球在核心区域保留了一些残余的硅,并在测试期间释放钙、磷和硅酸根离子,这意味着其具有长期的离子相关治疗功能。间充质干细胞对仿生球体具有良好的活力。由于尺寸优势(几微米),这些球体可以嵌入细胞,在三维细胞球体工程中介导细胞间相互作用,并且当掺入载有细胞的凝胶中时还能刺激细胞的成骨分化。本研究中观察到的这些有趣特性,包括仿生组成、高介孔率、治疗性离子释放、蛋白质的有效负载和长期释放以及多样且有利的三维细胞相互作用,表明新开发的仿生微球在生物医学应用如药物递送和细胞/组织工程方面具有巨大潜力。
本工作报道了通过一系列有趣且前所未有的现象,包括纳米颗粒的聚集、矿化和球体生长,由生物活性玻璃纳米颗粒仿生生长出尺寸为几微米的磷灰石球体。这些矿化微球具有一些独特的物理化学性质,包括介孔率、超高表面积和治疗性离子释放。此外,这些球体在二维和三维培养条件下表现出优异的蛋白质分子负载和递送能力,并介导有利的细胞间相互作用,展示了一个未来用于治疗递送和细胞/组织工程的多功能微载体平台。