Li Wei, Lucioni Tomas, Li Rongzhong, Bonin Keith, Cho Samuel S, Guthold Martin
Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States.
Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States; Department of Computer Science, Wake Forest University, Winston-Salem, NC 27109, United States.
Acta Biomater. 2017 Sep 15;60:264-274. doi: 10.1016/j.actbio.2017.07.037. Epub 2017 Jul 25.
Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis.
Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis.
血凝块的主要结构成分是微观纤维蛋白纤维网,会受到来自血流、凝块回缩以及与血小板和其他细胞相互作用产生的机械应变。我们开发了一种由易失性胶水(一种苯乙烯嵌段共聚物)制成的透明、有条纹且高度可拉伸的基质,以研究机械应变如何影响单个悬浮纤维蛋白纤维的溶解。在这种悬浮纤维试验中,溶解表现为纤维伸长、变粗(分解)、磨损和塌陷。拉伸单个纤维蛋白纤维会显著阻碍其溶解。在未交联和交联的纤维中均观察到这种效应。交联(不拉伸)也会阻碍单纤维溶解。我们的数据表明,应变是一种新的机械敏感因子,可在单纤维水平调节血凝块溶解(纤维蛋白溶解)。在单个纤维蛋白分子的分子水平上,应变可能会扭曲或阻碍纤溶酶切割位点的 access,从而阻碍溶解。
纤维蛋白纤维是血凝块的主要结构成分。我们开发了一种由易失性胶水制成的高度可拉伸基质和一种悬浮纤维蛋白纤维溶解试验,以研究拉伸对单个纤维蛋白纤维溶解的影响。我们实验的主要发现是:1)纤维在溶解时变粗并伸长;2)拉伸会强烈降低溶解;3)这种效应在未交联的纤维中更为明显;4)拉伸纤维对降低溶解的影响与交联纤维相似。在分子水平上,应变可能会扭曲纤溶酶切割位点,或限制对这些位点的 access。我们的结果表明,应变可能是一种调节纤维蛋白溶解的新的机械生物学因子。