Suppr超能文献

纤维蛋白纤维在纤溶过程中的微观结构变化。

Microscale structural changes of individual fibrin fibers during fibrinolysis.

机构信息

Department of Physics, East Carolina University, 1000 E. 5th St., Howell-Sci-Physics-C209, Greenville, NC, USA.

Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, USA.

出版信息

Acta Biomater. 2022 Mar 15;141:114-122. doi: 10.1016/j.actbio.2022.01.006. Epub 2022 Jan 7.

Abstract

Fibrinolysis is the enzymatic digestion of fibrin, the primary structural component in blood clots. Mechanisms of fibrin fiber digestion during lysis have long been debated and obtaining detailed structural knowledge of these processes is important for developing effective clinical approaches to treat ischemic stroke and pulmonary embolism. Using dynamic fluorescence microscopy, we studied the time-resolved digestion of individual fibrin fibers by the fibrinolytic enzyme plasmin. We found that plasmin molecules digest fibers along their entire lengths, but that the rates of digestion are non-uniform, resulting in cleavage at a single location along the fiber. Using mathematical modeling we estimated the rate of plasmin arrival at the fiber surface and the number of digestion sites on a fiber. We also investigated correlations between local fiber digestion rates, cleavage sites, and fiber properties such as initial thickness. Finally, we uncovered a previously unknown tension-dependent mechanism that pulls fibers apart during digestion. Taken together these results promote a paradigm shift in understanding mechanisms of fibrinolysis and underscore the need to consider fibrin tension when assessing fibrinolytic approaches. STATEMENT OF SIGNIFICANCE: We developed a method for interrogating lysis of individual fibrin fibers, enabling the time-resolved observation of individual fiber digestion for the first time. Our results resolve longstanding disagreements about fibrinolytic processes and reveal previously unknown mechanisms that also play a role. Also, we developed the first microscale mathematical model of plasmin-fibrin interaction, which predicts the number of plasmin molecules on each fiber and can serve as a framework for investigating novel therapeutics.

摘要

纤维蛋白溶解是纤维蛋白的酶促消化,纤维蛋白是血栓中的主要结构成分。纤维蛋白纤维在溶解过程中的消化机制长期以来一直存在争议,获得这些过程的详细结构知识对于开发治疗缺血性中风和肺栓塞的有效临床方法很重要。我们使用动态荧光显微镜研究了纤维蛋白溶解酶纤溶酶对单个纤维蛋白纤维的时分辨析消化。我们发现纤溶酶分子沿着纤维的全长消化纤维,但消化速度不均匀,导致纤维上的单一位置发生切割。使用数学建模,我们估计了纤溶酶到达纤维表面的速度和纤维上的消化部位的数量。我们还研究了局部纤维消化速度、切割部位以及纤维初始厚度等特性之间的相关性。最后,我们揭示了一种以前未知的张力依赖性机制,该机制在消化过程中将纤维拉开。总之,这些结果促进了对纤维蛋白溶解机制的理解的范式转变,并强调在评估纤维蛋白溶解方法时需要考虑纤维蛋白张力。

意义声明

我们开发了一种用于询问单个纤维蛋白纤维溶解的方法,使我们能够首次实时观察单个纤维的消化。我们的结果解决了关于纤维蛋白溶解过程的长期分歧,并揭示了以前未知的机制,这些机制也在起作用。此外,我们还开发了纤溶酶-纤维蛋白相互作用的第一个微尺度数学模型,该模型预测了每条纤维上的纤溶酶分子数量,并可以作为研究新型治疗方法的框架。

相似文献

1
3
Fluorescent microspheres can affect in vitro fibrinolytic outcomes.荧光微球会影响体外纤维蛋白溶解的结果。
PLoS One. 2023 Apr 7;18(4):e0284163. doi: 10.1371/journal.pone.0284163. eCollection 2023.
4
Physical determinants of fibrinolysis in single fibrin fibers.单个纤维蛋白纤维中纤维蛋白溶解的物理决定因素。
PLoS One. 2015 Feb 25;10(2):e0116350. doi: 10.1371/journal.pone.0116350. eCollection 2015.
6
Stretching single fibrin fibers hampers their lysis.拉伸单个纤维蛋白纤维会阻碍它们的溶解。
Acta Biomater. 2017 Sep 15;60:264-274. doi: 10.1016/j.actbio.2017.07.037. Epub 2017 Jul 25.

引用本文的文献

2
Protofibril packing density of individual fibers alters fibrinolysis.单个纤维的原纤维堆积密度会改变纤维蛋白溶解。
Res Pract Thromb Haemost. 2025 Feb 28;9(2):102708. doi: 10.1016/j.rpth.2025.102708. eCollection 2025 Feb.
3
8
What is the diameter of a fibrin fiber?纤维蛋白纤维的直径是多少?
Res Pract Thromb Haemost. 2023 Jun 25;7(5):100285. doi: 10.1016/j.rpth.2023.100285. eCollection 2023 Jul.
9
Fluorescent microspheres can affect in vitro fibrinolytic outcomes.荧光微球会影响体外纤维蛋白溶解的结果。
PLoS One. 2023 Apr 7;18(4):e0284163. doi: 10.1371/journal.pone.0284163. eCollection 2023.

本文引用的文献

10
Mean First-Passage Times in Biology.生物学中的平均首次通过时间
Isr J Chem. 2016 Nov;56(9-10):816-824. doi: 10.1002/ijch.201600040. Epub 2016 Aug 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验