Department of Physics, East Carolina University, 1000 E. 5th St., Howell-Sci-Physics-C209, Greenville, NC, USA.
Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, USA.
Acta Biomater. 2022 Mar 15;141:114-122. doi: 10.1016/j.actbio.2022.01.006. Epub 2022 Jan 7.
Fibrinolysis is the enzymatic digestion of fibrin, the primary structural component in blood clots. Mechanisms of fibrin fiber digestion during lysis have long been debated and obtaining detailed structural knowledge of these processes is important for developing effective clinical approaches to treat ischemic stroke and pulmonary embolism. Using dynamic fluorescence microscopy, we studied the time-resolved digestion of individual fibrin fibers by the fibrinolytic enzyme plasmin. We found that plasmin molecules digest fibers along their entire lengths, but that the rates of digestion are non-uniform, resulting in cleavage at a single location along the fiber. Using mathematical modeling we estimated the rate of plasmin arrival at the fiber surface and the number of digestion sites on a fiber. We also investigated correlations between local fiber digestion rates, cleavage sites, and fiber properties such as initial thickness. Finally, we uncovered a previously unknown tension-dependent mechanism that pulls fibers apart during digestion. Taken together these results promote a paradigm shift in understanding mechanisms of fibrinolysis and underscore the need to consider fibrin tension when assessing fibrinolytic approaches. STATEMENT OF SIGNIFICANCE: We developed a method for interrogating lysis of individual fibrin fibers, enabling the time-resolved observation of individual fiber digestion for the first time. Our results resolve longstanding disagreements about fibrinolytic processes and reveal previously unknown mechanisms that also play a role. Also, we developed the first microscale mathematical model of plasmin-fibrin interaction, which predicts the number of plasmin molecules on each fiber and can serve as a framework for investigating novel therapeutics.
纤维蛋白溶解是纤维蛋白的酶促消化,纤维蛋白是血栓中的主要结构成分。纤维蛋白纤维在溶解过程中的消化机制长期以来一直存在争议,获得这些过程的详细结构知识对于开发治疗缺血性中风和肺栓塞的有效临床方法很重要。我们使用动态荧光显微镜研究了纤维蛋白溶解酶纤溶酶对单个纤维蛋白纤维的时分辨析消化。我们发现纤溶酶分子沿着纤维的全长消化纤维,但消化速度不均匀,导致纤维上的单一位置发生切割。使用数学建模,我们估计了纤溶酶到达纤维表面的速度和纤维上的消化部位的数量。我们还研究了局部纤维消化速度、切割部位以及纤维初始厚度等特性之间的相关性。最后,我们揭示了一种以前未知的张力依赖性机制,该机制在消化过程中将纤维拉开。总之,这些结果促进了对纤维蛋白溶解机制的理解的范式转变,并强调在评估纤维蛋白溶解方法时需要考虑纤维蛋白张力。
我们开发了一种用于询问单个纤维蛋白纤维溶解的方法,使我们能够首次实时观察单个纤维的消化。我们的结果解决了关于纤维蛋白溶解过程的长期分歧,并揭示了以前未知的机制,这些机制也在起作用。此外,我们还开发了纤溶酶-纤维蛋白相互作用的第一个微尺度数学模型,该模型预测了每条纤维上的纤溶酶分子数量,并可以作为研究新型治疗方法的框架。