Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre, The University of Sheffield, Sheffield, United Kingdom.
Biotechnol J. 2017 Nov;12(11). doi: 10.1002/biot.201700081. Epub 2017 Sep 5.
Ralstonia eutropha H16 (also known as Cupriavidus necator H16) is a Gram-negative lithoautotrophic β-proteobacterium with increasing biotechnological applications, including carbon capture and utilization, biopolymer synthesis, and biofuel production. Engineering of this organism is supported by the availability of its genome sequence and suitable plasmid systems. However, the lack of a simple and robust transformation method remains a challenge as it limits both the pace and ease of engineering this organism. To overcome this limitation, a systematic study is performed to evaluate the effects of different parameters on the transformation efficiency of R. eutropha H16. The optimized electroporation protocol uses R. eutropha H16 cells grown to OD 0.6. These cells are made competent by a 15-min incubation in 50 mM CaCl , followed by two cell washes and final resuspension in 0.2 M sucrose prior to electroporation using 2.3 kV. This protocol achieves a transformation efficiency of (3.86 ± 0.29) × 10 cfu µg DNA, a 10 -fold improvement compared to a previously published value for the same plasmid. This transformation method is a valuable tool for R. eutropha H16 research and will further enable the development of other advanced molecular biology methods for this industrially relevant microorganism.
罗尔斯通氏菌 H16(也称为中慢生根瘤菌 H16)是革兰氏阴性的自养型β-proteobacterium,具有越来越多的生物技术应用,包括碳捕获和利用、生物聚合物合成和生物燃料生产。该生物体的工程改造得到了其基因组序列和合适的质粒系统的支持。然而,缺乏简单而强大的转化方法仍然是一个挑战,因为它限制了该生物体的工程改造的速度和容易程度。为了克服这一限制,对不同参数对罗尔斯通氏菌 H16 转化效率的影响进行了系统研究。优化的电穿孔方案使用生长至 OD 0.6 的罗尔斯通氏菌 H16 细胞。这些细胞通过在 50 mM CaCl 中孵育 15 分钟来制备感受态,然后进行两次细胞洗涤,最后在 0.2 M 蔗糖中重悬,然后在 2.3 kV 下进行电穿孔。该方案实现了(3.86±0.29)×10 cfu µg DNA 的转化效率,与之前发表的相同质粒相比提高了 10 倍。这种转化方法是罗尔斯通氏菌 H16 研究的有力工具,并将进一步为该工业相关微生物的其他先进分子生物学方法的发展提供支持。