Sarusi Portuguez Avital, Schwartz Michal, Siersbaek Rasmus, Nielsen Ronni, Sung Myong-Hee, Mandrup Susanne, Kaplan Tommy, Hakim Ofir
The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.
Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
FEBS J. 2017 Oct;284(19):3230-3244. doi: 10.1111/febs.14183. Epub 2017 Aug 16.
The three dimensional folding of mammalian genomes is cell type specific and difficult to alter suggesting that it is an important component of gene regulation. However, given the multitude of chromatin-associating factors, the mechanisms driving the colocalization of active chromosomal domains and the role of this organization in regulating the transcription program in adipocytes are not clear. Analysis of genome-wide chromosomal associations revealed cell type-specific spatial clustering of adipogenic genes in 3T3-L1 cells. Time course analysis demonstrated that the adipogenic 'hub', sampled by PPARγ and Lpin1, undergoes orchestrated reorganization during adipogenesis. Coupling the dynamics of genome architecture with multiple chromatin datasets indicated that among all the transcription factors (TFs) tested, RXR is central to genome reorganization at the beginning of adipogenesis. Interestingly, at the end of differentiation, the adipogenic hub was shifted to an H3K27me3-repressive environment in conjunction with attenuation of gene transcription. We propose a stage-specific hierarchy for the activity of TFs contributing to the establishment of an adipogenic genome architecture that brings together the adipogenic genetic program. In addition, the repositioning of this network in a H3K27me3-rich environment at the end of differentiation may contribute to the stabilization of gene transcription levels and reduce the developmental plasticity of these specialized cells.
All sequence data reported in this paper have been deposited at GEO (http://www.ncbi.nlm.nih.gov/geo/) (GSE92475).
哺乳动物基因组的三维折叠具有细胞类型特异性且难以改变,这表明它是基因调控的重要组成部分。然而,鉴于众多与染色质相关的因子,驱动活性染色体结构域共定位的机制以及这种组织在调节脂肪细胞转录程序中的作用尚不清楚。全基因组染色体关联分析揭示了3T3-L1细胞中脂肪生成基因的细胞类型特异性空间聚类。时间进程分析表明,由PPARγ和Lpin1采样的脂肪生成“枢纽”在脂肪生成过程中经历了精心编排的重组。将基因组结构动力学与多个染色质数据集相结合表明,在所有测试的转录因子(TFs)中,RXR在脂肪生成开始时对基因组重组至关重要。有趣的是,在分化结束时,脂肪生成枢纽与基因转录减弱一起转移到H3K27me3抑制环境中。我们提出了一个阶段特异性层次结构,用于有助于建立聚集脂肪生成遗传程序的脂肪生成基因组结构的转录因子活性。此外,在分化结束时,这个网络在富含H3K27me3的环境中的重新定位可能有助于稳定基因转录水平并降低这些特化细胞的发育可塑性。
本文报道的所有序列数据已存入GEO(http://www.ncbi.nlm.nih.gov/geo/)(GSE92475)。