Suppr超能文献

鉴定脂肪生成化学物质:3T3-L1、OP9 和原代间充质多能细胞模型中的差异效应。

Identifying adipogenic chemicals: Disparate effects in 3T3-L1, OP9 and primary mesenchymal multipotent cell models.

机构信息

Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.

Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.

出版信息

Toxicol In Vitro. 2020 Sep;67:104904. doi: 10.1016/j.tiv.2020.104904. Epub 2020 May 28.

Abstract

3T3-L1 pre-adipocytes are used commonly to identify new adipogens, but this cell line has been shown to produce variable results. Here, potential adipogenic chemicals (identified in the ToxCast dataset using the Toxicological Priority Index) were tested for their ability to induce adipocyte differentiation in 3T3-L1 cells, OP9 cells and primary mouse bone marrow multipotent stromal cells (BM-MSC). Ten of the 36 potential adipogens stimulated lipid accumulation in at least one model (novel: fenthion, quinoxyfen, prallethrin, allethrin, pyrimethanil, tebuconzaole, 2,4,6-tris (tert-butyl)phenol; known: fentin, pioglitazone, 3,3',5,5'-tetrabromobisphenol A). Only prallethrin and pioglitazone enhanced lipid accumulation in all models. OP9 cells were significantly more sensitive to chemicals known to activate PPARγ through RXR than the other models. Coordinate effects on adipocyte and osteoblast differentiation were investigated further in BM-MSCs. Lipid accumulation was correlated with the ability to stimulate expression of the PPARγ target gene, Plin1. Induction of lipid accumulation also was associated with reduction in alkaline phosphatase activity. Allethrin, prallethrin, and quinoxyfen strongly suppressed osteogenic gene expression. BM-MSCs were useful in coordinately investigating pro-adipogenic and anti-osteogenic effects. Overall, the results show that additional models should be used in conjunction with 3T3-L1 cells to identify a broader spectrum of adipogens and their coordinate effects on osteogenesis.

摘要

3T3-L1 前脂肪细胞常用于鉴定新的脂肪生成细胞,但已证明该细胞系的结果存在差异。在这里,使用毒性优先指数(Toxicological Priority Index)从 ToxCast 数据集中鉴定出潜在的脂肪生成化学物质,测试它们在 3T3-L1 细胞、OP9 细胞和原代小鼠骨髓多能基质细胞(BM-MSC)中诱导脂肪细胞分化的能力。在至少一种模型中,有 10 种潜在的脂肪生成化学物质刺激脂质积累(新型:倍硫磷、喹氧酚、炔丙菊酯、丙烯菊酯、嘧啶苯胺、噻菌灵、2,4,6-三(叔丁基)苯酚;已知:芬替、吡格列酮、3,3',5,5'-四溴双酚 A)。只有炔丙菊酯和吡格列酮在所有模型中均增强了脂质积累。OP9 细胞对已知通过 RXR 激活 PPARγ的化学物质的敏感性明显高于其他模型。进一步在 BM-MSCs 中研究了对脂肪细胞和成骨细胞分化的协同作用。脂质积累与刺激 PPARγ 靶基因 Plin1 表达的能力相关。脂质积累的诱导也与碱性磷酸酶活性的降低相关。丙烯菊酯、炔丙菊酯和喹氧酚强烈抑制成骨基因表达。BM-MSCs 可用于协调研究促脂肪生成和抗成骨作用。总的来说,结果表明,应将其他模型与 3T3-L1 细胞结合使用,以鉴定更广泛的脂肪生成剂及其对成骨作用的协同作用。

相似文献

1
Identifying adipogenic chemicals: Disparate effects in 3T3-L1, OP9 and primary mesenchymal multipotent cell models.
Toxicol In Vitro. 2020 Sep;67:104904. doi: 10.1016/j.tiv.2020.104904. Epub 2020 May 28.
2
A Data-Driven Transcriptional Taxonomy of Adipogenic Chemicals to Identify White and Brite Adipogens.
Environ Health Perspect. 2021 Jul;129(7):77006. doi: 10.1289/EHP6886. Epub 2021 Jul 29.
3
OP9 mouse stromal cells rapidly differentiate into adipocytes: characterization of a useful new model of adipogenesis.
J Lipid Res. 2006 Feb;47(2):450-60. doi: 10.1194/jlr.D500037-JLR200. Epub 2005 Nov 30.
4
[Comparison of Adipogenesis and Adipocyte Functions of 3T3-L1 Cells and Human Bone Marrow Mesenchymal Stem Cells In Vitro].
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015 Dec;23(6):1729-33. doi: 10.7534/j.issn.1009-2137.2015.06.036.
7
The transcription factor NKX1-2 promotes adipogenesis and may contribute to a balance between adipocyte and osteoblast differentiation.
J Biol Chem. 2019 Nov 29;294(48):18408-18420. doi: 10.1074/jbc.RA119.007967. Epub 2019 Oct 15.
9
Tributyltin engages multiple nuclear receptor pathways and suppresses osteogenesis in bone marrow multipotent stromal cells.
Chem Res Toxicol. 2015 Jun 15;28(6):1156-66. doi: 10.1021/tx500433r. Epub 2015 May 13.

引用本文的文献

1
Antiobesity Drug Discovery Research: Models for Shortening the Drug Discovery Pipeline.
Curr Drug Targets. 2024;25(6):388-403. doi: 10.2174/0113894501289136240312060838.
4
On the Utility of ToxCast-Based Predictive Models to Evaluate Potential Metabolic Disruption by Environmental Chemicals.
Environ Health Perspect. 2022 May;130(5):57005. doi: 10.1289/EHP6779. Epub 2022 May 9.
5
Obesity III: Obesogen assays: Limitations, strengths, and new directions.
Biochem Pharmacol. 2022 May;199:115014. doi: 10.1016/j.bcp.2022.115014. Epub 2022 Apr 5.
6
Obesogens: How They Are Identified and Molecular Mechanisms Underlying Their Action.
Front Endocrinol (Lausanne). 2021 Nov 25;12:780888. doi: 10.3389/fendo.2021.780888. eCollection 2021.
8
Tributyltin protects against ovariectomy-induced trabecular bone loss in C57BL/6J mice with an attenuated effect in high fat fed mice.
Toxicol Appl Pharmacol. 2021 Nov 15;431:115736. doi: 10.1016/j.taap.2021.115736. Epub 2021 Oct 5.
9
The new kids on the block: Emerging obesogens.
Adv Pharmacol. 2021;92:457-484. doi: 10.1016/bs.apha.2021.05.003. Epub 2021 Jul 8.
10
A Data-Driven Transcriptional Taxonomy of Adipogenic Chemicals to Identify White and Brite Adipogens.
Environ Health Perspect. 2021 Jul;129(7):77006. doi: 10.1289/EHP6886. Epub 2021 Jul 29.

本文引用的文献

1
Triphenyl phosphate is a selective PPARγ modulator that does not induce brite adipogenesis in vitro and in vivo.
Arch Toxicol. 2020 Sep;94(9):3087-3103. doi: 10.1007/s00204-020-02815-1. Epub 2020 Jul 18.
2
Current Research Approaches and Challenges in the Obesogen Field.
Front Endocrinol (Lausanne). 2019 Mar 22;10:167. doi: 10.3389/fendo.2019.00167. eCollection 2019.
3
Systemic PPARγ deletion in mice provokes lipoatrophy, organomegaly, severe type 2 diabetes and metabolic inflexibility.
Metabolism. 2019 Jun;95:8-20. doi: 10.1016/j.metabol.2019.03.003. Epub 2019 Mar 13.
4
Tributyltin induces a transcriptional response without a brite adipocyte signature in adipocyte models.
Arch Toxicol. 2018 Sep;92(9):2859-2874. doi: 10.1007/s00204-018-2268-y. Epub 2018 Jul 19.
5
mRNA transfection retrofits cell-based assays with xenobiotic metabolism.
J Pharmacol Toxicol Methods. 2018 Jul-Aug;92:77-94. doi: 10.1016/j.vascn.2018.03.002. Epub 2018 Mar 16.
6
Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics.
Toxicol Sci. 2018 May 1;163(1):152-169. doi: 10.1093/toxsci/kfy020.
7
Hierarchical role for transcription factors and chromatin structure in genome organization along adipogenesis.
FEBS J. 2017 Oct;284(19):3230-3244. doi: 10.1111/febs.14183. Epub 2017 Aug 16.
9
Metabolism disrupting chemicals and metabolic disorders.
Reprod Toxicol. 2017 Mar;68:3-33. doi: 10.1016/j.reprotox.2016.10.001. Epub 2016 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验