Xie Xin-Ping, Gan Bin, Yang Wulin, Wang Hong-Qiang
School of Mathematics and Physics, Anhui Jianzhu University, Hefei, Anhui, China.
Biological Molecular Information System Lab., Institute of Intelligent Machines, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, China.
J Biomed Inform. 2017 Sep;73:104-114. doi: 10.1016/j.jbi.2017.07.019. Epub 2017 Jul 27.
Identifying differentially expressed pathways (DEPs) plays important roles in understanding tumor etiology and promoting clinical treatment of cancer or other diseases. By assuming gene expression to be a sparse non-negative linear combination of hidden pathway signals, we propose a pathway crosstalk-based transcriptomics data analysis method (ctPath) for identifying differentially expressed pathways. Biologically, pathways of different functions work in concert at the systematic level. The proposed method interrogates the crosstalks between pathways and discovers hidden pathway signals by mapping high-dimensional transcriptomics data into a low-dimensional pathway space. The resulted pathway signals reflect the activity level of pathways after removing pathway crosstalk effect and allow a robust identification of DEPs from inherently complex and noisy transcriptomics data. CtPath can also correct incomplete and inaccurate pathway annotations which frequently occur in public repositories. Experimental results on both simulation data and real-world cancer data demonstrate the superior performance of ctPath over other popular approaches. R code for ctPath is available for non-commercial use at the URL http://micblab.iim.ac.cn/Download/.
识别差异表达通路(DEPs)在理解肿瘤病因以及推动癌症或其他疾病的临床治疗方面发挥着重要作用。通过假设基因表达是隐藏通路信号的稀疏非负线性组合,我们提出了一种基于通路串扰的转录组学数据分析方法(ctPath)来识别差异表达通路。从生物学角度来看,不同功能的通路在系统层面协同工作。该方法探究通路之间的串扰,并通过将高维转录组学数据映射到低维通路空间来发现隐藏的通路信号。得到的通路信号反映了去除通路串扰效应后通路的活性水平,并能够从本质上复杂且有噪声的转录组学数据中可靠地识别差异表达通路。CtPath还可以纠正公共数据库中经常出现的不完整和不准确的通路注释。在模拟数据和真实世界癌症数据上的实验结果证明了ctPath相对于其他流行方法的优越性能。ctPath的R代码可在网址http://micblab.iim.ac.cn/Download/ 用于非商业用途。