Xu Zhiyu, Stogios Peter J, Quaile Andrew T, Forsberg Kevin J, Patel Sanket, Skarina Tatiana, Houliston Scott, Arrowsmith Cheryl, Dantas Gautam, Savchenko Alexei
Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Room 333, Toronto, Ontario M5S 3E5, Canada.
Center for Structural Genomics of Infectious Diseases (CSGID) , Health Research Innovation Center, 3280 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
ACS Infect Dis. 2017 Sep 8;3(9):653-665. doi: 10.1021/acsinfecdis.7b00068. Epub 2017 Aug 16.
Aminoglycoside N-acetyltransferases (AACs) confer resistance against the clinical use of aminoglycoside antibiotics. The origin of AACs can be traced to environmental microbial species representing a vast reservoir for new and emerging resistance enzymes, which are currently undercharacterized. Here, we performed detailed structural characterization and functional analyses of four metagenomic AAC (meta-AACs) enzymes recently identified in a survey of agricultural and grassland soil microbiomes ( Forsberg et al. Nature 2014 , 509 , 612 ). These enzymes are new members of the Gcn5-Related-N-Acetyltransferase superfamily and confer resistance to the aminoglycosides gentamicin C, sisomicin, and tobramycin. Moreover, the meta-AAC0020 enzyme demonstrated activity comparable with an AAC(3)-I enzyme that serves as a model AAC enzyme identified in a clinical bacterial isolate. The crystal structure of meta-AAC0020 in complex with sisomicin confirmed an unexpected AAC(6') regiospecificity of this enzyme and revealed a drug binding mechanism distinct from previously characterized AAC(6') enzymes. Together, our data highlights the presence of highly active antibiotic-modifying enzymes in the environmental microbiome and reveals unexpected diversity in substrate specificity. These observations of additional AAC enzymes must be considered in the search for novel aminoglycosides less prone to resistance.
氨基糖苷N - 乙酰转移酶(AACs)可使细菌对临床使用的氨基糖苷类抗生素产生耐药性。AACs的起源可追溯到环境微生物物种,这些物种是新出现的耐药酶的巨大储存库,目前对它们的特征了解不足。在这里,我们对最近在一项农业和草地土壤微生物群落调查中发现的四种宏基因组AAC(meta - AACs)酶进行了详细的结构表征和功能分析(Forsberg等人,《自然》,2014年,第509卷,第612页)。这些酶是Gcn5相关N - 乙酰转移酶超家族的新成员,可使细菌对庆大霉素C、西索米星和妥布霉素等氨基糖苷类抗生素产生耐药性。此外,meta - AAC0020酶表现出与一种AAC(3)-I酶相当的活性,该酶是在临床细菌分离株中鉴定出的一种典型AAC酶。meta - AAC0020与西索米星复合物的晶体结构证实了该酶具有意想不到的AAC(6')区域特异性,并揭示了一种与先前表征的AAC(6')酶不同的药物结合机制。总之,我们的数据突出了环境微生物群落中存在高活性抗生素修饰酶,并揭示了底物特异性方面意想不到的多样性。在寻找不易产生耐药性的新型氨基糖苷类抗生素时,必须考虑这些额外的AAC酶的这些观察结果。