Chelstowska Sylwia, Widjaja-Adhi Made Airanthi K, Silvaroli Josie A, Golczak Marcin
Laboratory of Hematology and Flow Cytometry, Department of Hematology, Military Institute of Medicine , Warsaw 04141, Poland.
Biochemistry. 2017 Aug 29;56(34):4489-4499. doi: 10.1021/acs.biochem.7b00451. Epub 2017 Aug 15.
Vitamin A (all-trans-retinol) is metabolized to the visual chromophore (11-cis-retinal) in the eyes and to all-trans-retinoic acid, a hormone like compound, in most tissues. A key enzyme in retinoid metabolism is lecithin:retinol acyltransferase (LRAT), which catalyzes the esterification of vitamin A. The importance of LRAT is indicated by pathogenic missense and nonsense mutations, which cause devastating blinding diseases. Retinoid-based chromophore replacement therapy has been proposed as treatment for these types of blindness based on studies in LRAT null mice. Here, we analyzed the structural and biochemical basis for retinal pathology caused by mutations in the human LRAT gene. Most LRAT missense mutations associated with retinal degeneration are localized within the catalytic domain, whereas E14L substitution is localized in an N-terminal α-helix, which has been implicated in interaction with the phospholipid bilayer. To elucidate the biochemical consequences of this mutation, we determined LRAT(E14L)'s enzymatic properties, protein stability, and impact on ocular retinoid metabolism. Bicistronic expression of LRAT(E14L) and enhanced green fluorescence protein revealed instability and accelerated proteosomal degradation of this mutant isoform. Surprisingly, instability of LRAT(E14L) did not abrogate the production of the visual chromophore in a cell-based assay. Instead, expression of LRAT(E14L) led to a rapid increase in cellular levels of retinoic acid upon retinoid supplementation. Thus, our study unveils the potential role of retinoic acid in the pathology of a degenerative retinal disease with important implications for the use of retinoid-based therapeutics in affected patients.
维生素A(全反式视黄醇)在眼睛中代谢为视觉发色团(11-顺式视黄醛),而在大多数组织中则代谢为全反式视黄酸,一种类似激素的化合物。类视黄醇代谢中的关键酶是卵磷脂:视黄醇酰基转移酶(LRAT),它催化维生素A的酯化反应。致病性错义突变和无义突变导致了严重的致盲疾病,这表明了LRAT的重要性。基于对LRAT基因敲除小鼠的研究,已提出基于类视黄醇的发色团替代疗法来治疗这类失明。在此,我们分析了人类LRAT基因突变导致视网膜病变的结构和生化基础。大多数与视网膜变性相关的LRAT错义突变位于催化结构域内,而E14L替代则位于N端α螺旋中,该螺旋与磷脂双层的相互作用有关。为了阐明这种突变的生化后果,我们测定了LRAT(E14L)的酶学性质、蛋白质稳定性及其对眼部类视黄醇代谢的影响。LRAT(E14L)和增强型绿色荧光蛋白的双顺反子表达揭示了该突变异构体的不稳定性和加速的蛋白酶体降解。令人惊讶的是,在基于细胞的试验中,LRAT(E14L)的不稳定性并没有消除视觉发色团的产生。相反,在补充类视黄醇后,LRAT(E14L)的表达导致细胞内视黄酸水平迅速升高。因此,我们的研究揭示了视黄酸在退行性视网膜疾病病理中的潜在作用,这对在受影响患者中使用基于类视黄醇的治疗方法具有重要意义。