Perticaroli Stefania, Mostofian Barmak, Ehlers Georg, Neuefeind Joerg C, Diallo Souleymane O, Stanley Christopher B, Daemen Luke, Egami Takeshi, Katsaras John, Cheng Xiaolin, Nickels Jonathan D
Shull Wollan Center, A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Phys Chem Chem Phys. 2017 Oct 4;19(38):25859-25869. doi: 10.1039/c7cp04013j.
In liquids, the ability of neighboring molecules to rearrange and jostle past each other is directly related to viscosity, the property which describes the propensity to flow. The presence of hydrogen bonds (H-bonds) complicates the molecular scale picture of viscosity. H-Bonds are attractive, directional interactions between molecules which, in some cases, result in transient network structures. In this work, we use experimental and computational methods to demonstrate that the timescale of H-bond network reorganization is the dominant dynamical timescale associated with viscosity for the case of the model H-bonding liquid n-methylacetamide (NMA). This molecule is a peptide analog which forms a transient linear H-bond network. Individual H-bond lifetimes and dynamical fluctuations were observed on the timescale of 1.5 ps, while collective motions and the longest lived population of H-bond partner lifetimes were observed on the order of 20 ps, in agreement with the Maxwell relaxation time. This identifies a mechanism which may aid in understanding the emergence of various complex phenomena arising from transient molecular structures, with implications ranging from the internal dynamics of proteins, to the glass transition, to better understanding the origins of the unique properties of H-bonding liquids.
在液体中,相邻分子相互重新排列并彼此挤过的能力与粘度直接相关,粘度是描述流动倾向的一种性质。氢键(H键)的存在使粘度的分子尺度图景变得复杂。H键是分子间有吸引力的定向相互作用,在某些情况下会导致形成瞬态网络结构。在这项工作中,我们使用实验和计算方法来证明,对于模型氢键液体N-甲基乙酰胺(NMA)而言,氢键网络重组的时间尺度是与粘度相关的主导动力学时间尺度。该分子是一种肽类似物,可形成瞬态线性氢键网络。在1.5皮秒的时间尺度上观察到了单个氢键的寿命和动态波动,而集体运动和氢键伙伴寿命最长的群体则在20皮秒左右被观察到,这与麦克斯韦弛豫时间一致。这确定了一种机制,该机制可能有助于理解由瞬态分子结构产生的各种复杂现象的出现,其影响范围从蛋白质的内部动力学、玻璃化转变,到更好地理解氢键液体独特性质的起源。