Hino Kyosuke, Horigome Kazuhiko, Nishio Megumi, Komura Shingo, Nagata Sanae, Zhao Chengzhu, Jin Yonghui, Kawakami Koichi, Yamada Yasuhiro, Ohta Akira, Toguchida Junya, Ikeya Makoto
Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
iPS Cell-Based Drug Discovery, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan.
J Clin Invest. 2017 Sep 1;127(9):3339-3352. doi: 10.1172/JCI93521. Epub 2017 Jul 31.
Fibrodysplasia ossificans progressiva (FOP) is a rare and intractable disease characterized by extraskeletal bone formation through endochondral ossification. Patients with FOP harbor point mutations in ACVR1, a type I receptor for BMPs. Although mutated ACVR1 (FOP-ACVR1) has been shown to render hyperactivity in BMP signaling, we and others have uncovered a mechanism by which FOP-ACVR1 mistransduces BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling. Although Activin-A evokes enhanced chondrogenesis in vitro and heterotopic ossification (HO) in vivo, the underlying mechanisms have yet to be revealed. To this end, we developed a high-throughput screening (HTS) system using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) to identify pivotal pathways in enhanced chondrogenesis that are initiated by Activin-A. In a screen of 6,809 small-molecule compounds, we identified mTOR signaling as a critical pathway for the aberrant chondrogenesis of mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs). Two different HO mouse models, an FOP model mouse expressing FOP-ACVR1 and an FOP-iPSC-based HO model mouse, revealed critical roles for mTOR signaling in vivo. Moreover, we identified ENPP2, an enzyme that generates lysophosphatidic acid, as a linker of FOP-ACVR1 and mTOR signaling in chondrogenesis. These results uncovered the crucial role of the Activin-A/FOP-ACVR1/ENPP2/mTOR axis in FOP pathogenesis.
进行性骨化性纤维发育不良(FOP)是一种罕见且难治的疾病,其特征是通过软骨内成骨形成骨骼外骨。FOP患者在ACVR1(一种BMPs的I型受体)中存在点突变。尽管已证明突变的ACVR1(FOP-ACVR1)会使BMP信号通路过度活跃,但我们和其他人发现了一种机制,即FOP-ACVR1在响应激活素-A时错误转导BMP信号,激活素-A是一种通常转导TGF-β信号的分子。尽管激活素-A在体外可诱发增强的软骨生成,在体内可诱发异位骨化(HO),但其潜在机制尚未明确。为此,我们利用FOP患者来源的诱导多能干细胞(FOP-iPSCs)开发了一种高通量筛选(HTS)系统,以确定由激活素-A引发的增强软骨生成中的关键信号通路。在对6809种小分子化合物的筛选中,我们确定mTOR信号通路是FOP-iPSCs来源的间充质基质细胞(FOP-iMSCs)异常软骨生成的关键信号通路。两种不同的HO小鼠模型,一种表达FOP-ACVR1的FOP模型小鼠和一种基于FOP-iPSC的HO模型小鼠,揭示了mTOR信号通路在体内的关键作用。此外,我们确定ENPP2(一种产生溶血磷脂酸的酶)是FOP-ACVR信号和软骨生成中mTOR信号通路的连接分子。这些结果揭示了激活素-A/FOP-ACVR1/ENPP2/mTOR轴在FOP发病机制中的关键作用。