Tsurusawa Hideyo, Russo John, Leocmach Mathieu, Tanaka Hajime
Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK.
Nat Mater. 2017 Oct;16(10):1022-1028. doi: 10.1038/nmat4945. Epub 2017 Jul 31.
Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol, we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, the Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganized network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation, and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation, but fast enough to prevent immediate vitrification. This provides a novel pathway to form nanoporous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.
胶体悬浮液的粘弹性相分离可以通过玻璃化转变或结晶来中断,从而形成凝胶。通过一种新的共聚焦显微镜方法,我们追踪了相分离的整个动力学过程,从均相到不同的停滞状态。在实验中,我们的结果首次揭示了一种形成海绵状多孔晶体结构的新型结晶途径。在早期阶段,我们表明成核需要液相的结构重组,即应力驱动老化。一旦成核开始,我们观察到结晶遵循三种不同的途径:液相的直接结晶、贝吉隆过程和奥斯特瓦尔德熟化。成核在重组网络内部开始,但晶体通过气相在其表面的直接凝聚生长并超过该网络,驱动液体蒸发,并产生与原始相分离模式不同的网络结构。我们认为,如果液相足够缓慢以诱导粘弹性相分离,但又足够快以防止立即玻璃化,那么在单原子和分子系统中可以形成类似的晶体-凝胶状态。这提供了一种无需脱合金化即可形成金属和半导体纳米多孔晶体的新途径,这对于催化、光学、传感和过滤应用可能很重要。