INRES Horticultural Science, University of Bonn, Auf dem Hügel 6, 53121 Bonn, Germany.
INRES Horticultural Science, University of Bonn, Auf dem Hügel 6, 53121 Bonn, Germany.
J Plant Physiol. 2017 Nov;218:1-5. doi: 10.1016/j.jplph.2017.07.004. Epub 2017 Jul 19.
Perennial trees require chilling, i.e. a period of cold temperature in the winter, for flowering next spring; sweet cherry is particularly prone to lack of chilling. The objective of this study is to identify possible transition points to clearly distinguish dormancy phases by relating carbohydrate and relative water content (RWC) in reproductive buds to concomitant chilling fulfilment. This contribution proposes the use of four transition points between the dormancy phases and their characterization in terms of carbohydrates, water contents in combination with chilling values and may allow upscaling to other dormancy studies in trees; two groups of cherry varieties were defined based on their different initial sorbitol and starch level in the autumn. The first separation between para- and (deep) d-endo-dormancy is characterized as a transition from a decrease (variety group 1) or a constant level (variety group 2) to a sharp increase in hexoses and sorbitol and a drop of starch content. The second transition point (d-endo- to f-endo-dormancy) is characterized as the changes in both hexoses (increase) and starch (decrease) terminate and ca. 650 Chilling Hours (CH), i.e. insufficient chilling in the concomitant forcing experiment with cut branches. This third transition point (f-endo- to eco-dormancy) was characterized by ca. 1000 CH, the minimum chilling requirement and restrained flowering (cut branches). The fourth transition point (forcing initiation) marked an increase in water content at ca. 1550 CH, optimum chilling for cherry and coincided with natural flowering. A ratio of hexoses (glucose plus fructose) to starch content (<2:1) appeared to be a potential indicator of the beginning of chilling (para-dormancy) and a ratio of 14-20:1 typical for endo-dormancy, whereas the release from dormancy was associated with a decline to less than 10:1 at the end of winter (eco-dormancy). To our knowledge, this is the first time that transition points are identified based on constituents (carbohydrates and relative water content) in floral buds related to current chilling status and dormancy phases and are also presented in a schematic diagram. The understanding of these changes in relative water content and carbohydrate levels may contribute to manage insufficient chilling in the orchard and support climate change studies with trees.
多年生树木需要经历寒冷期(冬季低温期)才能在来年春天开花;甜樱桃尤其容易出现冷量不足的情况。本研究的目的是通过将生殖芽中的碳水化合物和相对含水量(RWC)与同时期的冷量供应联系起来,确定可能的转变点,以明确区分休眠阶段。本研究提出了利用休眠阶段之间的四个转变点及其与碳水化合物、水分含量以及冷量供应之间的关系进行特征描述的方法,这可能有助于将其应用于其他树木休眠研究中;根据秋季初始山梨糖醇和淀粉水平的不同,将两个甜樱桃品种组定义为不同类型。第一个休眠期(浅休眠和深休眠)与(深)休眠之间的分离特征是从己糖和山梨糖醇的急剧增加以及淀粉含量的急剧下降(品种组 1)或恒定水平(品种组 2)转变而来。第二个转变点(休眠向终末休眠的转变)的特征是己糖(增加)和淀粉(减少)的变化终止,同时在伴随的嫩枝切枝强制实验中需要约 650 个冷小时(CH),即冷量不足。第三个转变点(终末休眠向生态休眠的转变)的特征是约 1000 CH,即樱桃的最小冷量需求和限制开花(嫩枝切枝)。第四个转变点(强制启动)在约 1550 CH 时标记为含水量增加,这是樱桃的最佳冷量,同时也与自然开花相对应。己糖(葡萄糖加果糖)与淀粉含量的比值(<2:1)似乎是冷量开始(浅休眠)的潜在指标,而 14-20:1 的比值是终末休眠的典型特征,而休眠的解除则与冬季结束时的比值下降到 10:1 以下(生态休眠)有关。据我们所知,这是首次基于与当前冷量供应和休眠阶段相关的生殖芽中的成分(碳水化合物和相对含水量)来确定转变点,并以示意图的形式呈现。了解相对含水量和碳水化合物水平的这些变化可能有助于管理果园中的冷量不足,并为树木的气候变化研究提供支持。